
Relations

Emily

February 27, 2023

Introduction

This chapter contains somematerial about relations and constructions

with them. Notably, it contains:

• A basic discussion and definition of relations (Section 1.1);

• How relationsmay be viewed as decategorification of profunctors

(Remarks 1.1.5 and 1.1.6)

• A discussion of the various kind of categories (a category, a mon-

oidal category, a 2-category, a double category) that relations form
(Sections 1.2 to 1.5);

• The various categorical properties of the 2-category of relations, in-
cluding self-duality, identifications of adjunctions in Rel with func-

tions, ofmonads in Rel with preorders, of comonads in Rel with sub-

sets, thepartial co/completenessofRel, and its closedness, including

how right Kan extensions and right Kan lifts exist in Rel (Section 1.6);

• A discussion of the various kinds of operations involving relations,

such as graphs, domains, ranges, unions, intersections, products,

inverse relations, composition of relations, and collages (Section 2);

• A discussion of equivalence relations (Section 3) and quotient sets

(Section 3.5);

• A lengthy discussion of the adjoint pairs

'∗ a '−1 : P (�) � P (�),
'−1 a '! : P (�) � P (�)

of functors (morphismsofposets)betweenP (�) andP (�) induced
by a relation ' : �→| �, alongwith a discussion of the properties of
'∗, '−1, '

−1, and '! (Section 4).

These two pairs of adjoint functors are the counterpart for relations

of the adjoint triple 5∗ a 5 −1 a 5! induced by a function 5 : � → �

1

Contents 2

studied in ConstructionsWith Sets, Section 3, and indeedwe have

'−1 = '−1 iff ' is total and functional (Item 7 of Proposition 4.2.3).

Thuswhen ' comes from a function this pair of adjunctions reduces

to the triple adjunction 5∗ a 5 −1 a 5! frombefore.

The pairs '∗ a '−1 and '
−1 a '! will later make an appearance

in the context of continuous, open, and closed relations between

topological spaces (Topological Spaces, Section 5).

• Adiscussionofspans (Section5)andtheir relationtofunctions (Propo-

sition5.2.1)andrelations (Propositions5.3.1and5.3.3andRemark5.3.5);

• A discussion of “hyperpointed sets” (Section 6). I don’t knowwhy I

wrote this…

Notes toMyself

1. Define Λ and

Λ

.

2. Write about cospans.

Contents

1 Relations . 3

1.1 Foundations. 3

1.2 The Category of Relations. 9

1.3 The Closed SymmetricMonoidal Category of Relations . 10

1.4 The 2-Category of Relations . 13

1.5 TheDouble Category of Relations . 14

1.6 Properties of the Category of Relations. 21

2 OperationsWithRelations. 24

2.1 Graphs of Functions . 24

2.2 Representable Relations . 27

2.3 TheDomain and Range of a Relation. 27

2.4 Binary Unions of Relations. 28

2.5 Unions of Families of Relations. 30

2.6 Binary Intersections of Relations. 31

2.7 Intersections of Families of Relations. 32

2.8 Binary Products of Relations. 33

2.9 Products of Families of Relations. 36

2.10 The Inverse of a Relation . 36

2.11 Composition of Relations . 38

2.12 The Collage of a Relation. 43

3

3 EquivalenceRelations . 45

3.1 Reflexive Relations . 45

3.2 Symmetric Relations . 49

3.3 Transitive Relations . 51

3.4 Equivalence Relations. 55

3.5 Quotients by Equivalence Relations . 58

4 Functoriality of Powersets. 62

4.1 Direct Images . 62

4.2 Strong Inverse Images . 68

4.3 Weak Inverse Images. 74

4.4 Direct ImagesWith Compact Support. 80

4.5 Functoriality of Powersets . 87

4.6 Functoriality of Powersets: Relations on Powersets . 88

5 Spans . 89

5.1 Foundations. 89

5.2 Comparison to Functions . 98

5.3 Comparison to Relations. 99

6 Hyperpointed Sets . 104

6.1 Foundations. 104

6.2 Hyperpointed Functions . 106

6.3 Hyperpointed Relations . 107

6.4 Categories of Hyperpointed Sets. 112

6.5 FreeHyperpointed Sets . 113

A AppendixOther Chapters . 117

1 Relations

1.1 Foundations

Let � and � be sets.

Definition 1.1.1IRelations

A relation ' : �→| � from � to �1,2 is a subset ' of � × �.3

1Further Terminology: Also called amultivalued function from � to �, a relation over � and �,

relation on �and �, a binary relation over �and �, or a binary relation on �and �.

1.1 Foundations 4

2Further Terminology:When � = �, we also call ' ⊂ � × � a relation on �.
3FurtherNotation: Given elements 0 ∈ � and 1 ∈ �, wewrite 0 ∼' 1 tomean (0, 1) ∈ '.

Definition 1.1.2I ThePo/Set of RelationsOver TwoSets

Let � and � be sets.

1. The set of relations from � to � is the set Rel(�, �) defined by

Rel(�, �) def
= {Relations from � to �}.

2. The poset of relations from � to � is the poset Rel(�, �) def
= (Rel(�, �) ,

⊂) consisting of

• TheUnderlying Set. The set Rel(�, �) of Item 1;

• The Partial Order. The partial order

⊂ : Rel(�, �) × Rel(�, �) → {true, false}

on Rel(�, �) given by inclusion of relations.

Remark 1.1.3I EquivalentDefinitionsofRelations

A relation from � to � is equivalently:1

1. A subset of � × �.

2. A function from � × � to {true, false}.

3. A function from � toP (�).

4. A function from � toP (�).

5. A cocontinuousmorphism of posets from (P (�), ⊂) to (P (�), ⊂).

That is: we have bijections of sets

Rel(�, �) def
= P (� × �),
� Sets(� × �, {true, false}),
� Sets(�,P (�)),
� Sets(�,P (�)),
� Homcocont

Pos (P (�),P (�)),

1.1 Foundations 5

natural in �, � ∈ Obj(Sets).
1Intuition: In particular, wemay think of a relation ' : �→ P (�) from � to � as amultivalued

function from � to � (including the possibility of a given 0 ∈ �having no value at all).

Proof 1.1.4IProofofRemark 1.1.3

We claim that Items 1 to 5 are indeed equivalent:

• The equivalence between Items 1 and 2 is a special case of Sets, ?? of ??.

• The equivalencebetween Items2 and 3 is an instanceof currying, following

from the bijections

Sets(� × �, {true, false}) � Sets(�,Sets(�, {true, false}))
� Sets(�,P (�)). (Sets, ?? of ??)

• The equivalence between Items 2 and 4 is also an instance of currying,

following from the bijections

Sets(� × �, {true, false}) � Sets(�,Sets(�, {true, false}))
� Sets(�,P (�)). (Sets, ?? of ??)

• The equivalencebetween Items2 and 5 follows from theuniversal property

of the powerset P (-) of a set - as the free cocompletion of - via the

characteristic embedding

j- : - ↩→ P (-)

of - intoP (-) (Sets, ?? of ??).1

This finishes the proof.

1In particular, given a relation 5 : �→ P (�) from � to �, wemay extend the domain of 5 from �

to all ofP (�) by taking its left Kan extension along j- . This also coincides with the direct image

function 5∗ : P (�) → P (�) of ConstructionsWith Sets, Definition 3.3.1.

Remark 1.1.5IRelations asDecategorificationsof Profunctors I

The notion of a relation is a decategorification of that of a profunctor: while a

profunctor from a categoryC to a categoryD is a functor

p : Dop × C → Sets,

1.1 Foundations 6

a relation on sets � and � is a function

' : � × � → {true, false},

wherewe notice that:

• The opposite -op of a set - is itself, as (−)op : Cats → Cats restricts to
the identity endofunctor onSets;

• While

• A category is enriched over the category

Sets def
= Cats0

of sets, with profunctors taking values on it;

• A set is enriched over the set

{true, false} def
= Cats−1

of classical truth values, with relations taking values on it;

Remark 1.1.6IRelations asDecategorificationsof Profunctors II

Extending Remark 1.1.5, the equivalent definitions of relations in Remark 1.1.3 are

also related to the corresponding ones for profunctors (Categories, Remark 3.1.2),

which state that a profunctorp : C →| D is equivalently:

1. A functorp : Dop × C → Sets;

2. A functorp : C → PSh(D);

3. A functorp : Dop → Fun(C,Sets);

4. A colimit-preserving functorp : PSh(C) → PSh(D).

Indeed:

• The equivalence between Items 1 and 2 (and also that between Items 1

and 3, which is proved analogously) is an instance of currying, both for

profunctors as well as for relations, using the isomorphisms

Sets(� × �, {true, false}) � Sets(�,Sets(�, {true, false}))

1.1 Foundations 7

� Sets(�,P (�)),
Fun(Dop ×D ,Sets) � Fun(C,Fun(Dop,Sets))

� Fun(C,PSh(D)).

• The equivalence between Items 1 and 3 follows from the universal proper-

ties of:

• The powersetP (-) of a set - as the free cocompletion of - via the

characteristic embedding

j (−) : - ↩→ P (-)

of - intoP (-) (Sets, ?? of ??);
• The categoryPSh(C) of presheaves on a categoryC as the free co-
completion ofC via the Yoneda embedding

よ : C ↩→ PSh(C)

ofC intoPSh(C) (Categories, ?? of Proposition 7.3.2).

Example 1.1.7I The Trivial Relation

The trivial relation on �and � is the relation∼triv defined by
1,2,3

∼triv
def
= � × �.

1This is the unique relation ' on � and � such that we have 0 ∼' 1 for all 0 ∈ � and all 1 ∈ �.
2As a function from � × � to {true, false}, the relation∼triv is the constant function

Δtrue : � × � → {true, false}

from � × � to {true, false} taking value true.
3As a function from � toP (�) , the relation∼triv is the function

Δtrue : �→ P (�)

defined by

Δtrue (0)
def
= �

for each 0 ∈ �.

1.1 Foundations 8

Example 1.1.8I The Cotrivial Relation

The cotrivial relation on �and � is the relation∼cotriv defined by
1,2,3

∼cotriv
def
= Ø.

1This is the unique relation ' on � and � such that we have 0 ∼' 1 for no 0 ∈ � and no 1 ∈ �.
2As a function from � × � to {true, false}, the relation∼cotriv is the constant function

Δfalse : � × � → {true, false}

from � × � to {true, false} taking value false.
3As a function from � toP (�) , the relation∼cotriv is the function

Δfalse : �→ P (�)

defined by

Δtrue (0)
def
= Ø

for each 0 ∈ �.

Example 1.1.9I The Characteristic Relationof a Set

The characteristic relation on � of Sets, ?? of ?? is another example of a relation. It

is in fact the unique relation on �making the following conditions equivalent,

for each 0, 1 ∈ �:

1. We have 0 ∼id 1.

2. We have 0 = 1.

Example 1.1.10I SquareRoots

Square roots are examples of relations:

1. Square Roots inR. The assignment F ↦→
√
F defines a relation

√− : R→ P (R)

fromR to itself, being explicitly given by

√
F

def
=

{
0 if F = 0,{
−
√
|F |,

√
|F |

}
if F ≠ 0.

2. Square Roots inQ. Square roots inQ are similar to square roots inR, though
now additionally itmay also occur that

√− : Q→ P (Q) sends a rational
number F (e.g. 2) to the empty set (since

√
2 6∈ Q).

1.2 The Category of Relations 9

Example 1.1.11I Complex Logarithms

The complex logarithmdefines a relation

log : C→ P (C)

fromC to itself, wherewe have

log(0 + 17) def
=

{
log

(√
02 + 12

)
+ 7 arg(0 + 17) + (2c7)9

��� 9 ∈ Z}
for each 0 + 17 ∈ C.

Example 1.1.12IMore Examples of Relations

See [Wik22] for more examples of relations, such as antiderivation, inverse

trigonometric functions, and inverse hyperbolic functions.

1.2 The Category of Relations

Definition 1.2.1I The CategoryofRelations

The category of relations is the categoryRelwhere

• Objects. The objects ofRel are sets;

• Morphisms. For each �, � ∈ Obj(Sets), we have

Rel(�, �) def
= Rel(�, �);

• Identities. For each � ∈ Obj(Rel), the unitmap

1Rel
� : pt → Rel(�, �)

ofRel at � is defined by

idRel
�

def
= j�(−1,−2),

where j�(−1,−2) is the characteristic relation of �of Sets, ?? of ??;

• Composition. For each �, �,� ∈ Obj(Rel), the compositionmap

◦Rel
�,�,� : Rel(�,�) × Rel(�, �) → Rel(�,�)

1.3 The Closed SymmetricMonoidal Category of Relations 10

ofRel at (�, �,�) is defined by

(◦Rel
�,�,� '

def
= (� '

for each ((, ') ∈ Rel(�,�) × Rel(�, �), where (� ' is the composition of

(and ' of Definition 2.11.1.

1.3 The Closed SymmetricMonoidal Category of Relations

Definition 1.3.1I The Closed SymmetricMonoidal CategoryofRelations

The closed symmetricmonoidal category of relations is the closed symmetric

monoidal category
(
Rel ,×,1Rel, URel, _Rel, dRel, fRel, HomRel

)
consisting of

• TheUnderlying Category. The category Rel of sets and relations;

• TheMonoidal Product. The functor

× : Rel× Rel → Rel

where

• Action onObjects.Wehave

×(�, �) def
= � × �,

where � × � is the Cartesian product of sets of Sets, ??;

• Action onMorphisms. For each pair ofmorphisms

' : �→| �,
(: � →| �

of Rel, the image

' × (: � × � →| � × �

of (', () by× is the relation

' × (: (� × �) × (� × �) → {true, false}

of Definition 2.8.1;

1.3 The Closed SymmetricMonoidal Category of Relations 11

• TheMonoidal Unit. The functor

1Rel : pt → Rel

picking the punctual set pt;

• The Associator. The natural isomorphism

URel : × ◦((×) × id) �
=⇒× ◦ (id × (×)),

Rel× Rel× Rel Rel× Rel

Rel× Rel Rel ,

id×(×)

(×)×id ×

×

URel

whose component

URel�,�,� : (� × �) × � →| � × (� × �)

at (�, �,�) is defined by declaring

((0, 1), 2) ∼URel
�,�,�

(0′, (1′, 2′))

iff 0 = 0′, 1 = 1′, and 2 = 2′;

• The Left Unitor. The natural isomorphism

_Rel : × ◦
(
1Rel × id

)
�

=⇒ ,Cats2
Rel

,

pt × Rel Rel× Rel

Rel ,

1Rel×id

,
Cats2
Rel

×
_Rel

whose component

_Rel� : 1Rel × �→| �

at � is defined by declaring

(★, 0) ∼_Rel
�
1

iff 0 = 1;

1.3 The Closed SymmetricMonoidal Category of Relations 12

• The Right Unitor. The natural isomorphism

dRel : × ◦
(
id × 1Rel

)
�

=⇒ 1Cats2
Rel

,

Rel×pt Rel× Rel

Rel ,

id×1Rel

1
Cats2
Rel

×
dRel

whose component

dRel� : � × 1Rel →| �

at � is defined by declaring

(0,★) ∼dRel
�
1

iff 0 = 1;

• The Symmetry. The natural isomorphism

fRel : × =⇒ × ◦ 2Cats2
Rel,Rel

,

Rel× Rel Rel ,

Rel× Rel

×

2
Cats2
Rel,Rel

×fRel

whose component

fRel�,� : � × � → � × �

at (�, �) is defined by declaring

(0, 1) ∼fRel
�,�

(1′, 0′)

iff 0 = 0′ and 1 = 1′.

• The InternalHom. The bifunctor1

HomRel : Relop × Rel → Rel

1.4 The 2-Category of Relations 13

defined by

HomRel(�, �)
def
= � × �

for each �, � ∈ Obj(Rel), with its left and right partial functors being
adjoint to×, witnessed by bijections of sets2

Rel(� × �,�) � Rel(�,HomRel (�,�))
def
= Rel(�, � × �),

Rel(� × �,�) � Rel(�,HomRel (�,�))
def
= Rel(�, � × �),

natural in �, �,� ∈ Obj(Rel).
1More precisely,HomRel is given by the composition

Relop × Rel
�−→ Rel × Rel

×−−→ Rel,

where the self-duality equivalence Relop � Rel comes from ?? of Proposition 1.6.1.
2Indeed, we have

Rel(� × �,�) def= Sets(� × � × �, {true, false})
def
= Rel(�, � × �)
def
= Rel(�,HomRel (�,�)) ,

and similarly for the isomorphismRel(� × �,�) � Rel(�,HomRel (�,�)) .

1.4 The 2-Category of Relations

Definition 1.4.1I The 2-CategoryofRelations

The 2-category of relations is the locally posetal 2-categoryRelwhere
• Objects. The objects ofRel are sets;

• Hom-Posets. For each �, � ∈ Obj(Sets), we have
HomRel (�, �)

def
= Rel(�, �)
def
= (Rel(�, �), ⊂);

• Identities. For each � ∈ Obj(Rel), the unitmap

1Rel
� : pt → Rel(�, �)

ofRel at � is defined by

idRel
�

def
= j�(−1,−2),

1.5 TheDouble Category of Relations 14

where j�(−1,−2) is the characteristic relation of �of Sets, ?? of ??;

• Composition. For each �, �,� ∈ Obj(Rel), the compositionmap1

◦Rel
�,�,� : Rel(�,�) × Rel(�, �) → Rel(�,�)

ofRel at (�, �,�) is defined by

(◦Rel
�,�,� '

def
= (� '

for each ((, ') ∈ Rel(�,�) × Rel(�, �), where (� ' is the composition

of (and ' of Definition 2.11.1.

1Note that this is indeed amorphism of posets: given relations '1 , '2 ∈ Rel(�, �) and (1 , (2 ∈
Rel(�,�) such that

'1 ⊂ '2 ,

(1 ⊂ (2 ,

we have also (1 � '1 ⊂ (2 � '2.

1.5 TheDouble Category of Relations

Definition 1.5.1I TheDouble CategoryofRelations

The double category of relations is the locally posetal double category Reldbl

where

• Objects. The objects ofReldbl are sets;

• Vertical Morphisms. The vertical morphisms of Reldbl are maps of sets

5 : �→ �;

• Horizontal Morphisms. The horizontal morphisms of Reldbl are relations
' : �→| - ;

• 2-Morphisms. A 2-cell

� �

- .

'

5 6

(

U

1.5 TheDouble Category of Relations 15

ofReldbl is either non-existent or an inclusion of relations of the form

' ⊂ (◦ (5 × 6),

� × � {true, false}

- × . {true, false};

'

5×6 id{true,false}

(

⊂

• Horizontal Identities. The horizontal unit functor

1Reldbl
: Reldbl

0 → Reldbl
1

ofReldbl is the functor where

• Action onObjects. For each � ∈ Obj
(
Reldbl

0

)
, we have

1�
def
= j�(−1,−2);

• Action onMorphisms. For each verticalmorphism 5 : �→ � ofReldbl,
i.e. eachmap of sets 5 from � to �, the identity 2-morphism

� �

� �

1�

5 5

1�

15

of 5 is the inclusion

j� ◦ (5 × 5) ⊂ j�,

� × � {true, false}

� × � {true, false}

j� (−1 ,−2)

5×5 id{true,false}

j� (−1 ,−2)

⊂

of Sets, Definition 1.2.3;

• Vertical Identities. For each � ∈ Obj
(
Reldbl

)
, we have

idReldbl

�

def
= id�;

1.5 TheDouble Category of Relations 16

• Identity2-Morphisms. For each horizontalmorphism ' : �→| � ofReldbl,
the identity 2-morphism

� �

� �

'

id� id�

'

id'

of ' is the identity inclusion

' ⊂ ',

� × � {true, false}

� × � {true, false};

'

id�×id� id{true,false}

'

⊂

• Horizontal Composition. The horizontal composition functor

�Reldbl
: Reldbl

1 ×
Reldbl

0

Reldbl
1 → Reldbl

1

ofReldbl is the functor where

• Action onObjects. For each composable pair �
'

−→| �
(

−→| � of hori-

zontalmorphisms ofReldbl, we have

(� '
def
= (� ',

where (� ' is the composition of ' and (of Definition 2.11.1;

• Action onMorphisms. For each horizontally composable pair

� �

- .

'

5 6

)

U

� �

. /

(

6 ℎ

*

V

1.5 TheDouble Category of Relations 17

of 2-morphisms ofReldbl, i.e. for each pair

� × � {true, false}

- × . {true, false}

'

5×6 id{true,false}

)

⊂
� × � {true, false}

. × / {true, false}

(

6×ℎ id{true,false}

*

⊂

of inclusions of relations, the horizontal composition

� �

- /

(�'

5 ℎ

*�)

V�U

of U and V is the inclusion of relations

(* �)) ◦ (5 × ℎ) ⊂ ((� ')

� × � {true, false}

- × / {true, false},

(�'

5×ℎ id{true,false}

*�)

⊂

which is justified by noting that, given (0, 2) ∈ �×�, the statement

• We have 0 ∼(*�)) ◦ (5×ℎ) 2, i.e. 5 (0) ∼*�) ℎ(2), i.e. there exists
some G ∈ . such that:

1. We have 5 (0) ∼) G;

2. We have G ∼* ℎ(2);
is implied by the statement

• We have 0 ∼(�' 2, i.e. there exists some 1 ∈ � such that:
1. We have 0 ∼' 1;
2. We have 1 ∼(2;

since:

• If 0 ∼' 1, then 5 (0) ∼) 6(1), as) ◦ (5 × 6) ⊂ ';

• If 1 ∼(2, then 6(1) ∼* ℎ(2), as* ◦ (6 × ℎ) ⊂ (;

1.5 TheDouble Category of Relations 18

• Vertical Composition of1-Morphisms. For each composable pair �
�−−→�

�−−→�

of verticalmorphisms ofReldbl, i.e. maps of sets, we have

6 ◦Reldbl
5

def
= 6 ◦ 5 ;

• Vertical Composition of2-Morphisms. For each vertically composable pair

� -

� .

'

5 6

(

U

� .

� /

(

ℎ 9

)

V

of 2-morphisms ofReldbl, i.e. for each each pair

� × - {true, false}

� × . {true, false}

'

5×6 id{true,false}

(

⊂
� × . {true, false}

� × / {true, false}

(

ℎ×9 id{true,false}

)

⊂

of inclusions of relations, we define the vertical composition

� -

� /

'

ℎ◦ 5 9◦ 6

)

V ◦ U

of U and V as the inclusion of relations

) ◦ [(ℎ ◦ 5) × (9 ◦ 6)] ⊂ ',

� × - {true, false}

� × / {true, false}

'

(ℎ◦ 5)×(9◦ 6) id{true,false}

)

⊂

1.5 TheDouble Category of Relations 19

given by the pasting of inclusions

� × - {true, false}

� × . {true, false}

� × / {true, false},

'

5×6 id{true,false}

(

ℎ×9 id{true,false}

)

⊂

⊂

which is justified by noting that, given (0, F) ∈ � × - , the statement

• We have ℎ(5 (0)) ∼) 9(6(F));

is implied by the statement

• We have 0 ∼' F;

since

• If 0 ∼' F, then 5 (0) ∼(6(F), as (◦ (5 × 6) ⊂ ';

• If 1 ∼(G, then ℎ(1) ∼) 9(G), as) ◦ (ℎ × 9) ⊂ (, and thus, in

particular:

• If 5 (0) ∼(6(F), then ℎ(5 (0)) ∼) 9(6(F));
• Associators. For each composable triple �

'

−→| �
(

−→| �
)

−→| � of hori-

zontalmorphisms ofReldbl, the component

UReldbl

),(,' : () � () � '
�

=⇒) � ((� '),

� � � �

� � � �

'

id�

()

id�

' ()

UReldbl
),(,'

of the associator ofReldbl at (', (,)) is the identity inclusion

() � () � ' =) � ((� ')

� × � {true, false}

� × � {true, false},

()�()�'

id{true,false}

)�((�')

=

1.5 TheDouble Category of Relations 20

justified by Item 2 of Proposition 2.11.5;

• Left Unitors. For each horizontalmorphism ' : �→| � ofReldbl, the com-

ponent

_Reldbl

' : 1� � '
�

=⇒ ',

� � �

� �

'

id�

1�

id�

'

_Reldbl
'

of the left unitor ofReldbl at ' is the identity inclusion

' = j� � ',

� × � {true, false}

� × � {true, false},

j��'

id{true,false}

'

=

justified by Item 3 of Proposition 2.11.5;

• Right Unitors. For each horizontal morphism ' : � →| � of Reldbl, the
component

dReldbl

' : ' � 1�
�

=⇒ ',

� � �

� �

1�

id�

'

id�

'

dReldbl
'

of the right unitor ofReldbl at ' is the identity inclusion

' = ' � j�,

� × � {true, false}

� × � {true, false},

'� j�

id{true,false}

'

=

justified by Item 3 of Proposition 2.11.5.

1.6 Properties of the Category of Relations 21

1.6 Properties of the Category of Relations

Proposition 1.6.1IProperties of the CategoryofRelations

Let � and � be sets.

1. Self-Duality I.The category Rel is self-dual, i.e. we have an equivalence of

categories Relop eq.

� Rel.

2. Self-Duality II. The bicategoryRel is self-dual, i.e. we have a biequivalence
of bicategoriesRelop eq.

� Rel.

3. Equivalences and Isomorphisms inRel. Let ' : �→| � be a relation from � to

�. The following conditions are equivalent:

(a) The relation ' : �→| � is an equivalence inRel.
(b) The relation ' : �→| � is an isomorphism in Rel, i.e. there exists a

relation '−1 : � →| � from � to � such that we have

'−1 � ' = j�,

' � '−1 = j�.

(c) There exists a bijection 5 : � �−→ �with ' = Γ(5).

4. Adjunctions inRel.Wehave a natural bijection{
Adjunctions inRel

from � to �

}
�

{
Functions

from � to �

}
.

5. Monads inRel.Wehave a natural bijection{
Monads in

Rel on �

}
� {Preorders on �}.

6. Comonads inRel.Wehave a natural bijection{
Comonads in

Rel on �

}
� {Subsets of �}.

7. As a Kleisli Category.Wehave an isomorphism of categories

Rel � FreeAlgP ,

whereP is the powersetmonad ofMonads, Example 3.11.1.

1.6 Properties of the Category of Relations 22

8. Co/Completeness (Or Lack Thereof). The category Rel is not co/complete, but

admits some co/limits:

(a) ZeroObjects. The category Rel has a zero object, the empty set Ø.

(b) Co/Products. The category Rel has co/products, both given by disjoint

union of sets.

(c) Lack of Co/Equalisers. The category Rel does not have co/equalisers.

(d) Limits of Graphs of Functions. The category Rel has limits whose arrows

are all graphs of functions.

(e) Colimits of Graphs of Functions. The category Rel has colimits whose

arrows are all graphs of functions, and these agree with the corre-

sponding limits inSets.

9. Closedness. ThebicategoryRel is a closedbicategory,wheregivena relation
' : �→| � and a set - :

• Right Kan Extensions. The right adjoint

Ran' : Rel(�, -) → Rel(�, -)

to the precomposition functor '∗ : Rel(�, -) → Rel(�, -) is given
by

Ran' (()
def
=

∫
0∈�

Hom{true,false}
(
'−2
0 , (

−1
0

)
for each (∈ Rel(�, -), so we have 1 ∼Ran' (() F iff, for each 0 ∈ �, if

0 ∼' 1, then 0 ∼(F.
• Right Kan Lifts. The right adjoint to the postcomposition functor

Rift' : Rel(-, �) → Rel(-, �)

to thepostcomposition functor'∗ : Rel(-, �) → Rel(-, �) is given
by

Rift' (()
def
=

∫
1∈�

Hom{true,false}
(
'1−1 , (

1
−2

)
for each (∈ Rel(-, �), so we have F ∼Rift' (() 0 iff, for each 1 ∈ �, if
0 ∼' 1, then F ∼(1.

1.6 Properties of the Category of Relations 23

Proof 1.6.2IProofof Proposition 1.6.1

Item 1: Self-Duality I

Omitted.

Item 2: Self-Duality II

Omitted.

Item 3: Equivalences and Isomorphisms in Rel

Omitted.

Item 4: Adjunctions inRel
Indeed, an adjunction in Rel from � to � consists of a pair of relations

' : �→| �,
(: � →| �,

together with inclusions

j� ⊂ ' � (,
(� ' ⊂ j�.

These conditions then imply the following statements:

(★) Given 0 ∈ �, there exists some 1 ∈ � such that 0 ∼' 1 and 1 ∼(0, and
thus ' is an entire relation.

(★) If 0 ∼' 1, then there exists, by the above item, some 1′ ∈ � such that

0 ∼' 1′ and 1′ ∼(0. But since (� ' ⊂ j�, we have 1 = 1
′, and thus ' is a

functional relation.

Conversely, every function 5 : �→ � gives rise to an adjunctionΓ(5) a Γ(5)† in
Rel from � to �.

Item 5: Monads inRel
Omitted.

Item 6: Comonads inRel
Omitted.

Item 7: As a Kleisli Category

Omitted.

Item 8: Co/Completeness (Or Lack Thereof)

24

Omitted.

Item 9: Closedness

Omitted.

2 OperationsWithRelations

2.1 Graphs of Functions

Let 5 : �→ � be a function.

Definition 2.1.1I TheGraphof a Function

The graph of 5 is the relationΓ(5) : �→| � defined as follows:

• Viewing relations as subsets of � × �, we define

Γ(5) def
= {(0, 5 (0)) ∈ � × � | 0 ∈ �};

• Viewing relations as functions � × � → {true, false}, we define

Γ(5)0,1
def
=

{
true if 1 = 5 (0),
false otherwise

for each (0, 1) ∈ � × �;

• Viewing relations as functions �→ P (�), we define

[Γ(5)] (0) def
= {5 (0)}

for each 0 ∈ �, i.e. we defineΓ(5) as the composition

�
5
−−→ �

j�−−→ P (�).

Proposition 2.1.2IProperties ofGraphsof Functions

Let 5 : �→ � be a function.

1. Functoriality. The assignment � ↦→ Γ(�) defines a functor

Γ : Sets → Rel

2.1 Graphs of Functions 25

where

• Action onObjects. For each � ∈ Obj(Sets), we have

Γ(�) def
= �;

• Action onMorphisms. For each �, � ∈ Obj(Sets), the action onHom-

sets

Γ�,� : Sets(�, �) → Rel(Γ(�),Γ(�))︸ ︷︷ ︸
def
=Rel(�,�)

ofΓ at (�, �) is defined by

Γ�,� (5)
def
= Γ(5),

whereΓ(5) is the graph of 5 as in Definition 2.1.1.

2. Internal Adjointness.Wehave an adjunction

(
Γ(5) a Γ(5)†

)
:

Γ(5)

Γ(5)†

a

� �

inRel.

3. Adjointness.Wehave an adjunction

(Γ a P∗):
Γ

P∗

aSets Rel,

witnessed by a bijection of sets

Rel(Γ(�), �) � Sets(�,P (�))

natural in � ∈ Obj(Sets) and � ∈ Obj(Rel).

4. Cocontinuity. The functorΓ : Sets → Rel of Item 1 preserves colimits.

5. Characterisations. Let ' : � →| � be a relation. The following conditions

are equivalent:

2.1 Graphs of Functions 26

(a) There exists a function 5 : �→ � such that ' = Γ(5).
(b) The relation ' is total and functional.

(c) Theweak and strong inverse images of ' agree, i.e. we have '−1 =

'−1.

(d) The relation ' has a right adjoint '† in Rel.

Proof 2.1.3IProofof Proposition 2.1.2

Item 1: Functoriality

Omitted.

Item 2: Internal Adjointness

This follows from Item 4.

Item 3: Adjointness

Omitted.

Item 4: Cocontinuity

Omitted.

Item 5: Characterisations

We claim that Items (a) to (d) are indeed equivalent:

• Item (a) ⇐⇒ Item (b). Clear.

• Item (a) ⇐⇒ Item (c). The implication Item (a) =⇒ Item (b) is clear.

Conversely, if '−1 = '−1, thenwe have

• Item (a) =⇒ Item (c). Clear.

• Item (c) =⇒ Item (b).We claim that ' is indeed total and functional:

• Totality. If we had '(0) = Ø for some 0 ∈ �, then we would have

0 ∈ '−1 (Ø), so that '−1 (Ø) ≠ Ø. But since '−1 (Ø) = Ø, thiswould

imply '−1 (Ø) ≠ '−1 (Ø), a contradiction. Thus '(0) ≠ Ø for all

0 ∈ � and ' is total.

• Functionality. If '−1 = '−1, thenwe have

{0} = '−1 ({1})
= '−1 ({1})

2.2 Representable Relations 27

for each 1 ∈ '(0) and each 0 ∈ �, and thus '(0) ⊂ {1}. But
since ' is total, wemust have '(0) = {1}, and thuswe see that ' is
functional.

• Item (a) ⇐⇒ Item (d). This follows from Item 4 of Proposition 1.6.1.

This finishes the proof.

2.2 RepresentableRelations

Let � and � be sets.

Definition 2.2.1IRepresentable Relations

Let 5 : �→ � and 6 : � → �be functions.1

1. The representable relation associated to 5 is the relation j5 : � →| �

defined as the composition

� × �
5×id�−−−−→ � × �

j�−−→ {true, false},

i.e. by declaring 0 ∼j5 1 iff 5 (0) = 1.

2. The corepresentable relation associated to 6 is the relation j6 : � →| �

defined as the composition

� × �
6×id�−−−−→ � × �

j�−−→ {true, false},

i.e. by declaring 1 ∼j6 0 iff 6(1) = 0.
1More generally, given functions

5 : �→ �,

6 : � → �

and a relation � →| �, wemay consider the composite relation

� × �
5×6
−−→ � × �

'−−→ {true, false} ,

for whichwe have 0 ∼' ◦ (5×6) 1 iff 5 (0) ∼' 6 (1) .

2.3 TheDomain andRange of aRelation

Let � and � be sets.

2.4 Binary Unions of Relations 28

Definition 2.3.1I TheDomainandRangeof aRelation

Let ' ⊂ � × � be a relation.1,2

1. The domain of ' is the subset dom(') of �defined by

dom(') def
=

{
0 ∈ �

���� there exists some 1 ∈ �

such that 0 ∼' 1

}
.

2. The range of ' is the subset range(') of � defined by

range(') def
=

{
1 ∈ �

���� there exists some 0 ∈ �

such that 0 ∼' 1

}
.

1Following Categories, Definition 3.3.1, wemay compute the (characteristic functions associated

to the) domain and range of a relation using the following colimit formulas:

jdom(') (0) � colim
1∈�

(
'0
1

)
(0 ∈ �)

�
∨
1∈�

'0
1
,

jrange(') (1) � colim
0∈�

(
'0
1

)
(1 ∈ �)

�
∨
0∈�

'0
1
,

where the join
∨
is taken in the poset ({true, false} , �) of Sets, Definition A.2.5.

2Viewing ' as a function ' : �→ P (�) , we have

dom(') � colim
G∈.

(' (G))

�
⋃
G∈.

' (G) ,

range(') � colim
F∈-

(' (F))

�
⋃
F∈-

' (F) ,

2.4 BinaryUnions of Relations

Let � and � be sets and let ' and (be relations from � to �.

Definition 2.4.1IBinaryUnionsofRelations

The union of ' and(1 is the relation ' ∪ (from � to � defined as their union as

sets.

1Further Terminology: Also called the binary union of ' and(, for emphasis.

2.4 Binary Unions of Relations 29

Remark 2.4.2IUnwindingDefinition 2.4.1, I

Viewing relations as functions � × � → {true, false}, wemay define the union

of ' and (as the relation ' ∪ (from � to � defined by

' ∪ (def
= {(0, 1) ∈ � × � | we have 0 ∼' 1 or 0 ∼(1}.

Remark 2.4.3IUnwindingDefinition 2.4.1, II

Viewing relations as functions �→ P (�), wemay define the union of ' and (

as the relation ' ∪ (from � to � defined by

[' ∪ (] (0) def
= '(0) ∪ ((0)

for each 0 ∈ �.

Proposition 2.4.4IProperties of BinaryUnionsofRelations

Let ', (, '1, and '2 be relations from � to �, and let (1 and (2 be relations from
� to�.

1. InteractionWith Inverses.Wehave

(' ∪ ()† = '† ∪ (†.

2. InteractionWith Composition.Wehave

((1 � '1) ∪ ((2 � '2)
poss

≠ ((1 ∪ (2) � ('1 ∪ '2).

Proof 2.4.5IProofof Proposition 2.4.4

Item 1: InteractionWith Inverses

Clear.

Item 2: InteractionWith Composition

Unwinding the definitions, we see that:

1. The condition for ((1 � '1) ∪ ((2 � '2) is:

(a) There exists some 1 ∈ � such that:
(i) 0 ∼'1 1 and 1 ∼(1 2;

2.5 Unions of Families of Relations 30

or

(i) 0 ∼'2 1 and 1 ∼(2 2;

3. The condition for ((1 ∪ (2) � ('1 ∪ '2) is:

(a) There exists some 1 ∈ � such that:
(i) 0 ∼'1 1 or 0 ∼'2 1;

and

(i) 1 ∼(1 2 or 1 ∼(2 2.

These two conditionsmay fail to agree (counterexample omitted), and thus the

two resulting relations on � × �may differ.

2.5 Unions of Families of Relations

Let � and � be sets and let {'7}7∈ � be a family of relations from � to �.

Definition 2.5.1I TheUnionof a Family of Relations

The union of the family {'7}7∈ � is the relation
⋃
7∈ � '7 from � to � defined as its

union as a family of sets.

Remark 2.5.2IUnwindingDefinition 2.5.1, I

Viewing relations as functions � × � → {true, false}, wemay define the union

of the family {'7}7∈ � as the relation
⋃
7∈ � '7 from � to � defined by⋃

7∈ �
'7

def
=

{
(0, 1) ∈ (� × �)×�

���� there exists some 7 ∈ �

such that 0 ∼'7 1

}
.

Remark 2.5.3IUnwindingDefinition 2.5.1, II

Viewing relations as functions �→ P (�), wemay define the union of the family

{'7}7∈ � as the relation
⋃
7∈ � '7 from � to � defined by[⋃

7∈ �
'7

]
(0) def

=
⋃
7∈ �

'7 (0)

for each 0 ∈ �.

2.6 Binary Intersections of Relations 31

Proposition 2.5.4IProperties ofUnionsof Families of Relations

Let � and � be sets and let {'7}7∈ � be a family of relations from � to �.

1. InteractionWith Inverses.Wehave(⋃
7∈ �

'7

)†
=

⋃
7∈ �

'
†
7
.

Proof 2.5.5IProofof Proposition 2.5.4

Item 1: InteractionWith Inverses

Clear.

2.6 Binary Intersections of Relations

Let � and � be sets and let ' and (be relations from � to �.

Definition 2.6.1IBinary IntersectionsofRelations

The intersection of ' and (1 is the relation ' ∩ (from � to � defined as their

intersection as sets.

1Further Terminology: Also called the binary intersection of ' and(, for emphasis.

Remark 2.6.2IUnwindingDefinition 2.6.1, I

Viewing relations as functions � × � → {true, false}, wemay define the inter-

section of ' and (as the relation ' ∪ (from � to � defined by

' ∩ (def
= {(0, 1) ∈ � × � | we have 0 ∼' 1 and 0 ∼(1}.

Remark 2.6.3IUnwindingDefinition 2.6.1, II

Viewing relations as functions �→ P (�), wemay define the intersection of '

and (as the relation ' ∪ (from � to � defined by

[' ∩ (] (0) def
= '(0) ∩ ((0)

for each 0 ∈ �.

2.7 Intersections of Families of Relations 32

Proposition 2.6.4IProperties of Binary IntersectionsofRelations

Let ', (, '1, and '2 be relations from � to �, and let (1 and (2 be relations from
� to�.

1. InteractionWith Inverses.Wehave

(' ∩ ()† = '† ∩ (†.

2. InteractionWith Composition.Wehave

((1 � '1) ∩ ((2 � '2) = ((1 ∩ (2) � ('1 ∩ '2).

Proof 2.6.5IProofof Proposition 2.6.4

Item 1: InteractionWith Inverses

Clear.

Item 2: InteractionWith Composition

Unwinding the definitions, we see that:

1. The condition for ((1 � '1) ∩ ((2 � '2) is:

(a) There exists some 1 ∈ � such that:
(i) 0 ∼'1 1 and 1 ∼(1 2;

and

(i) 0 ∼'2 1 and 1 ∼(2 2;

3. The condition for ((1 ∩ (2) � ('1 ∩ '2) is:

(a) There exists some 1 ∈ � such that:
(i) 0 ∼'1 1 and 0 ∼'2 1;

and

(i) 1 ∼(1 2 and 1 ∼(2 2.

These two conditions agree, and thus so do the two resulting relations on � × �.

2.7 Intersections of Families of Relations

Let � and � be sets and let {'7}7∈ � be a family of relations from � to �.

2.8 Binary Products of Relations 33

Definition 2.7.1I The Intersectionof a Family of Relations

The intersection of the family {'7}7∈ � is the relation
⋃
7∈ � '7 defined as its inter-

section as a family of sets.

Remark 2.7.2IUnwindingDefinition 2.7.1, I

Viewing relations as functions � × � → {true, false}, wemay define the inter-

section of the family {'7}7∈ � as the relation
⋃
7∈ � '7 from � to � defined by⋃

7∈ �
'7

def
=

{
(0, 1) ∈ (� × �)×�

���� for each 7 ∈ � , we

have 0 ∼'7 1

}
.

Remark 2.7.3IUnwindingDefinition 2.7.1, II

Viewing relations as functions �→ P (�), wemay define the intersection of the

family {'7}7∈ � as the relation
⋂
7∈ � '7 from � to � defined by[⋂

7∈ �
'7

]
(0) def

=
⋂
7∈ �

'7 (0)

for each 0 ∈ �.

Proposition 2.7.4IProperties of Intersectionsof Families of Relations

Let � and � be sets and let {'7}7∈ � be a family of relations from � to �.

1. InteractionWith Inverses.Wehave(⋃
7∈ �

'7

)†
=

⋃
7∈ �

'
†
7
.

Proof 2.7.5IProofof Proposition 2.7.4

Item 1: InteractionWith Inverses

Clear.

2.8 Binary Products of Relations

Let �, �, - , and. be sets, let ' : �→| � be a relation from � to �, and let (: - →| .
be a relation from - to. .

2.8 Binary Products of Relations 34

Definition 2.8.1IBinaryProducts of Relations

Theproduct of' and(1 is the relation '× (from �× - to �×. defined as their

Cartesian product as sets.

1Further Terminology: Also called the binary product of ' and(, for emphasis.

Remark 2.8.2IUnwindingDefinition 2.8.1, I

In detail, the product of ' and(is the relation '× (from �× - to �×. defined

by

' × (def
= {((0, F), (1, G)) ∈ (� × -) × (� × .) | we have 0 ∼' 1 and F ∼(G},

i.e. wherewe declare (0, F) ∼'×((1, G) iff 0 ∼' 1 and F ∼(G.

Remark 2.8.3IUnwindingDefinition 2.8.1, II

Viewing relations as functions �→ P (�), wemay define the product of ' and (

as the relation

' × (: � × - → P (� × .)

from � × - to � × . defined as the composition

� × - '×(−−−→ P (�) × P (.)
P⊗
�,.

↩→ P (� × .)

inSets, i.e. by
[' × (] (0, F) def

= '(0) × ((F)

for each (0, F) ∈ � × - .

Proposition 2.8.4IProperties of BinaryProducts of Relations

Let �, �, - , and. be sets.

1. InteractionWith Inverses. Let

' : �→| �,

(: - →| -

Wehave

(' × ()† = '† × (†.

2.8 Binary Products of Relations 35

2. InteractionWith Composition. Let

'1 : �→| �,
(1 : � →| �,
'2 : - →| .,
(2 : . →| /

be relations. We have

((1 � '1) × ((2 � '2) = ((1 × (2) � ('1 × '2).

Proof 2.8.5IProofof Proposition 2.4.4

Item 1: InteractionWith Inverses

Unwinding the definitions, we see that:

1. We have (0, F) ∼('×()† (1, G) iff:

• We have (1, G) ∼'×((0, F), i.e. iff:
• We have 1 ∼' 0;
• We have G ∼(F;

2. We have (0, F) ∼'†×(† (1, G) iff:

• We have 0 ∼'† 1 and F ∼(† G, i.e. iff:
• We have 1 ∼' 0;
• We have G ∼(F.

These two conditions agree, and thus the two resulting relations on � × - are

equal.

Item 2: InteractionWith Composition

Unwinding the definitions, we see that:

1. We have (0, F) ∼((1�'1)×((2�'2) (2, H) iff:

(a) We have 0 ∼(1�'1 2 and F ∼(2�'2 H, i.e. iff:

(i) There exists some 1 ∈ � such that 0 ∼'1 1 and 1 ∼(1 2;

(ii) There exists some G ∈ . such that F ∼'2 G and G ∼(2 H;

2. We have (0, F) ∼((1×(2)� ('1×'2) (2, H) iff:

2.9 Products of Families of Relations 36

(a) There exists some (1, G) ∈ � × . such that (0, F) ∼'1×'2 (1, G) and
(1, G) ∼(1×(2 (2, H), i.e. such that:
(i) We have 0 ∼'1 1 and F ∼'2 G;

(ii) We have 1 ∼(1 2 and G ∼(2 H.

These two conditions agree, and thus the two resulting relations from � × - to

� × / are equal.

2.9 Products of Families of Relations

Let {�7}7∈ � and {�7}7∈ � be families of sets, and let {'7 : �7 →| �7}7∈ � be a family of

relations.

Definition 2.9.1I TheProductof a Family of Relations

Theproductof the family {'7}7∈ � is the relation
∏

7∈ � '7 from
∏

7∈ � �7 to
∏

7∈ � �7
defined as its product as a family of sets.

Remark 2.9.2IUnwindingDefinition 2.9.1, I

Viewing relations as functions �× � → {true, false}, wemaydefine the product

of the family {'7}7∈ � as the relation
∏

7∈ � '7 from
∏

7∈ � �7 to
∏

7∈ � �7 defined by∏
7∈ �

'7
def
=

{
(07, 17) 7∈ � ∈

∏
7∈ �

(�7 × �7)
����� for each 7 ∈ � , we

have 07 ∼'7 17

}
.

Remark 2.9.3IUnwindingDefinition 2.9.1, II

Viewing relations as functions � → P (�), we may define the product of the

family {'7}7∈ � as the relation
∏

7∈ � '7 from
∏

7∈ � �7 to
∏

7∈ � �7 defined by[∏
7∈ �

'7

]
((07) 7∈ �)

def
=

∏
7∈ �

'7 (07)

for each (07) 7∈ � ∈
∏

7∈ � '7.

2.10 The Inverse of aRelation

Let �, �, and� be sets and let ' ⊂ � × � be a relation.

2.10 The Inverse of a Relation 37

Definition 2.10.1I The Inverse of aRelation

The inverse of '1 is the relation '† defined by

'†
def
= {(1, 0) ∈ � × � | we have 1 ∼' 0}.

1Further Terminology: Also called the opposite of ', the transpose of ', or the converse of '.

Remark 2.10.2IUnwindingDefinition 2.10.1, I

Viewing relations as functions �× � → {true, false}, wemay define the inverse

of ' as the relation '† from � to �defined by[
'†

]
1
0

def
= '01

for each (0, 1) ∈ � × �.

Remark 2.10.3IUnwindingDefinition 2.10.1, II

Viewing relations as functions �→ P (�), wemay define the inverse of ' as the

relation '† from � to �defined by[
'†

]
(1) def

= '† ({1})
def
= {0 ∈ � | 1 ∈ '(0)}

for each 1 ∈ �, where '† ({1}) is the fibre of ' over {1}.

Example 2.10.4I Examples of Inverses of Relations

Here are some examples of inverses of relations.

1. Less Than Equal Signs.Wehave (≤)† = ≥.

2. Greater Than Equal Signs. Dually to Item 1, we have (≥)† = ≤.

Proposition 2.10.5IProperties of Inverses of Relations

Let ' : �→| � and (: � →| � be relations.

1. InteractionWith Ranges andDomains.Wehave

dom
(
'†

)
= range('),

2.11 Composition of Relations 38

range
(
'†

)
= dom(').

2. InteractionWith Composition I.Wehave

((� ')† = '† � (†.

3. InteractionWith Composition II.Wehave

j� (−1,−2) ⊂ ' � '†,
j�(−1,−2) ⊂ '† � '.

4. Invertibility.Wehave (
'†

)†
= '.

5. Identity.Wehave

j
†
�
(−1,−2) = j�(−1,−2).

Proof 2.10.6IProofof Proposition 2.10.5

Item 1: InteractionWith Ranges andDomains

Clear.

Item 2: InteractionWith Composition I

Clear.

Item 3: InteractionWith Composition II

Clear.

Item 4: Invertibility

Clear.

Item 5: Identity

Clear.

2.11 Composition of Relations

Let �, �, and� be sets and let ' ⊂ � × � and (⊂ � × � be relations.

2.11 Composition of Relations 39

Definition 2.11.1I CompositionofRelations

The composition of ' and(is the relation (� ' defined by

(� ' def
=

{
(0, 2) ∈ � × �

���� there exists some 1 ∈ � such

that 0 ∼' 1 and 1 ∼(2

}
.

Remark 2.11.2IUnwindingDefinition 2.11.1, I

Viewing relations as functions �× � → {true, false}, wemay define the compo-

sition of ' and (as the relation (� ' from � to� defined by

((� ')−1
−2

def
=

∫ G∈�
(−1
G × 'G−2

=
∨
G∈�

(−1
G × 'G−2 ,

where the join
∨
is taken in the poset ({true, false}, �) of Sets, Definition A.2.5.

Remark 2.11.3IUnwindingDefinition 2.11.1, II

Viewing relations as functions �→ P (�), wemay define the composition of '

and (as the relation (� ' from � to� defined by

(� ' def
= Lanj� (() ◦ ',

� P (�),

� P (�)

(

j�

'

Lanj� (()

where Lanj� (() is computed by the formula[
Lanj� (()

]
(+) �

∫ G∈�
jP (�)

(
j G , +

)
� (G

�

∫ G∈�
j+ (G) � (G

�
⋃
G∈�

j+ (G) � (G

�
⋃
G∈+

(G

2.11 Composition of Relations 40

for each+ ∈ P (�). Thus, we have1

[(� '] (0) def
= (('(0))
def
=

⋃
F∈' (0)

((F).

1That is: the relation'maysend 0 ∈ � toanumberofelements {17 } 7∈ � in�, andthenthe relation
(may send the image of each of the 17 ’s to a number of elements {((17) } 7∈ � =

{{
2 87

}
87∈ �7

}
7∈ �

in�.

Example 2.11.4I Examples of CompositionofRelations

Here are some examples of composition of relations.

1. Composing Less/Greater Than EqualWith Greater/Less Than Equal Signs. We

have

≤ � ≥ =∼triv,

≥ � ≤ =∼triv .

2. Composing Less/Greater Than Equal SignsWith Less/Greater Than Equal Signs.

Wehave

≤ � ≤ = ≤,
≥ � ≥ = ≥.

Proposition 2.11.5IProperties of CompositionofRelations

Let ' : �→| �, (: � →| �, and) : � →| � be relations.

1. InteractionWith Ranges andDomains.Wehave

dom((� ') ⊂ dom('),
range((� ') ⊂ range(().

2. Associativity.Wehave

() � () � ' =) � ((� ').

3. Unitality.Wehave

j� � ' = ',

' � j� = '.

2.11 Composition of Relations 41

4. InteractionWith Inverses.Wehave

((� ')† = '† � (†.

5. InteractionWith Composition.Wehave

j� (−1,−2) ⊂ ' � '†,
j�(−1,−2) ⊂ '† � '.

Proof 2.11.6IProofof Proposition 2.11.5

Item 1: InteractionWith Ranges andDomains

Clear.

Item 2: Associativity

Indeed, we have

() � () � ' def
=

(∫ G∈�
)−1
F × (F−2

)
� '

def
=

∫ F∈� (∫ G∈�
)−1
F × (FG

)
� 'G−2

=

∫ F∈� ∫ G∈� (
)−1
F × (FG

)
� 'G−2

=

∫ G∈� ∫ F∈� (
)−1
F × (FG

)
� 'G−2

=

∫ G∈� ∫ F∈�
)−1
F ×

(
(FG � 'G−2

)
=

∫ F∈�
)−1
F ×

(∫ G∈�
(FG � 'G−2

)
def
=

∫ F∈�
)−1
F × ((� ')F−2

def
=) � ((� ').

In the languageof relations, given 0 ∈ �and 3 ∈ �, the statedequalitywitnesses
the equivalence of the following two statements:

1. We have 0 ∼()�()�' 3, i.e. there exists some 1 ∈ � such that:

2.11 Composition of Relations 42

(a) We have 0 ∼' 1;
(b) We have 1 ∼)�(3, i.e. there exists some 2 ∈ � such that:

(i) We have 1 ∼(2;
(ii) We have 2 ∼) 3;

2. We have 0 ∼)�((�') 3, i.e. there exists some 2 ∈ � such that:

(a) We have 0 ∼(�' 2, i.e. there exists some 1 ∈ � such that:
(i) We have 0 ∼' 1;
(ii) We have 1 ∼(2;

(b) We have 2 ∼) 3;

both of which are equivalent to the statement

• There exist 1 ∈ � and 2 ∈ � such that 0 ∼' 1 ∼(2 ∼) 3.

Item 3: Unitality

Indeed, we have

j� � '
def
=

∫ F∈�
(j�)−1

F × 'F−2

=
∨
F∈�

(j�)−1
F × 'F−2

=
∨
F∈�
F=−1

'F−2

= '−1
−2 ,

and

' � j�
def
=

∫ F∈�
'−1
F × (j�)F−2

=
∨
F∈�

'−1
F × (j�)F−2

=
∨
F∈�
F=−2

'−1
F

= '−1
−2 .

In the language of relations, given 0 ∈ � and 1 ∈ �:

2.12 The Collage of a Relation 43

• The equality

j� � ' = '

witnesses the equivalence of the following two statements:

1. We have 0 ∼1 �.
2. There exists some 1′ ∈ � such that:

(a) We have 0 ∼' 1′
(b) We have 1′ ∼j� 1, i.e. 1

′ = 1.

• The equality

' � j� = '

witnesses the equivalence of the following two statements:

1. There exists some 0′ ∈ � such that:

(a) We have 0 ∼j� 0
′, i.e. 0 = 0′.

(b) We have 0′ ∼' 1
2. We have 0 ∼1 �.

Item 4: InteractionWith Inverses

Clear.

Item 5: InteractionWith Composition

Clear.

2.12 The Collage of aRelation

Let � and � be sets and let ' : �→| � be a relation from � to �.

Definition 2.12.1I The Collageof aRelation

The collage of '1 is the poset Coll(') def
=

(
Coll('), �Coll(')

)
consisting of

• TheUnderlying Set. The set Coll(') defined by

Coll(') def
= �

∐
�.

• The Partial Order. The partial order

�Coll(') : Coll(') × Coll(') → {true, false}

2.12 The Collage of a Relation 44

on Coll(') defined by

� (0, 1) def
=

{
true if 0 = 1 or 0 ∼' 1,
false otherwise.

1Further Terminology: Also called the cograph of '.

Proposition 2.12.2IProperties of Collages of Relations

Let � and � be sets and let ' : �→| � be a relation from � to �.

1. Functoriality. The assignment ' ↦→ Coll(') defines a functor1

Coll : Rel(�, �) → Pos/Δ1 (�, �)

where

• Action onObjects. For each ' ∈ Obj(Rel(�, �)), we have

[Coll] (') def
= Coll(')

for each ' ∈ Rel(�, �), where Coll(') is the collage of ' of Defini-
tion 2.12.1;

• Action onMorphisms. For each ', (∈ Obj(Rel(�, �)), the action on
Hom-sets

Coll',(: HomRel(�,�) (', () → HomPos/Δ1 (Coll('), Coll(())

of Coll at (', () is given by sending an inclusion

] : ' ⊂ (

to themorphism

Coll(]) : Coll(') → Coll(()

of posets overΔ1 defined by

[Coll(])] (F) def
= F

for each F ∈ Coll(').2

2. Equivalence. The functor of Item 1 is an equivalence of categories.

45

1HerePos/Δ1 (�, �) is the category defined as the pullback

Pos/Δ1 (�, �) def= pt ×
[�] ,Pos,fib0

Pos/Δ1 ×
fib1 ,Pos,[�]

pt,

as in the diagram

Pos/Δ1 (�, �)

Pos/Δ1 ×
Pos

pt pt ×
Pos

Pos/Δ1

pt Pos/Δ1 pt.

Pos Pos
[�] fib[0] fib[1] [�]

y

y

y

2Note that this is indeed amorphism of posets: if F �Coll(') G, then F = G or F ∼' G, so we have

either F = G or F ∼(G, and thus F �Coll(() G.

Proof 2.12.3IProofof Proposition 2.12.2

Item 1: Functoriality

Omitted.

Item 2: Equivalence

Omitted.

3 EquivalenceRelations

3.1 ReflexiveRelations

3.1.1 Foundations

Let �be a set.

Definition 3.1.1IReflexive Relations

A reflexive relation is equivalently:1

• AnE0-monoid in (N• (Rel(�, �)), j�);

• A pointed object in (Rel(�, �), j�).

3.1 Reflexive Relations 46

1Note that sinceRel(�, �) is posetal, reflexivity is a property of a relation, instead of a structure.

Remark 3.1.2IUnwindingDefinition 3.1.1

In detail, a relation ' on � is reflexive if we have an inclusion

[' : j� ⊂ '

of relations inRel(�, �), i.e. if, for each 0 ∈ �, we have 0 ∼' 0.

Definition 3.1.3I ThePo/Set of Reflexive Relationsona Set

Let �be a set.

1. The set of reflexive relations on � is the subset Relrefl (�, �) of Rel(�, �)
spanned by the reflexive relations.

2. The poset of relations on � is is the subposet Relrefl (�, �) of Rel(�, �)
spanned by the reflexive relations.

Proposition 3.1.4IProperties of Reflexive Relations

Let ' and (be relations on �.

1. InteractionWith Inverses. If ' is reflexive, then so is '†.

2. InteractionWith Composition. If ' and (are reflexive, then so is (� '.

Proof 3.1.5IProofof Proposition 3.1.4

Item 1: InteractionWith Inverses

Clear.

Item 2: InteractionWith Composition

Clear.

3.1.2 TheReflexive Closure of aRelation

Let ' be a relation on �.

3.1 Reflexive Relations 47

Definition 3.1.6I TheReflexive Closureof aRelation

The reflexive closure of∼' is the relation∼refl
'

1 satisfying the following universal

property:2

(UP) Given another reflexive relation∼(on � such that ' ⊂ (, there exists an

inclusion∼refl
'

⊂ ∼(.
1FurtherNotation: Alsowritten 'refl.
2Slogan: The reflexive closure of ' is the smallest reflexive relation containing '.

Construction 3.1.7I TheReflexive Closureof aRelation

Concretely,∼refl
'

is the free pointed object on ' in (Rel(�, �), j�)1, being given
by

'refl
def
= '

∐Rel(�,�) Δ�

= ' ∪ Δ�

= {(0, 1) ∈ � × � | we have 0 ∼' 1 or 0 = 1}.
1Or, equivalently, the freeE0-monoid on ' in (N• (Rel(�, �)) , j�) .

Proof 3.1.8IProofof Construction 3.1.7

Clear.

Proposition 3.1.9IProperties of theReflexive Closureof aRelation

Let ' be a relation on �.

1. Adjointness.Wehave an adjunction

(
(−)refl a忘

)
:

(−) refl

忘

a

Rel(�, �) Relrefl (�, �),

witnessed by a bijection of sets

Relrefl
(
∼refl
' ,∼(

)
� Rel(∼' ,∼(),

natural in∼' ∈ Obj
(
Relrefl (�, �)

)
and∼(∈ Obj(Rel(�, �)).

2. The Reflexive Closure of a Reflexive Relation. If ' is reflexive, then 'refl = '.

3.1 Reflexive Relations 48

3. Idempotency.Wehave (
'refl

) refl
= 'refl.

4. InteractionWith Inverses.Wehave

(
'†

) refl
=

(
'refl

)†
,

Rel(�, �) Rel(�, �)

Rel(�, �) Rel(�, �).

(−) refl

(−)† (−)†

(−) refl

5. InteractionWith Composition.Wehave

((� ')refl = (refl � 'refl,

Rel(�, �) × Rel(�, �) Rel(�, �)

Rel(�, �) × Rel(�, �) Rel(�, �).

�

(−) refl×(−) refl (−) refl

�

Proof 3.1.10IProofof Proposition 3.1.9

Item 1: Adjointness

This is a rephrasing of the universal property of the reflexive closure of a relation,

stated in Definition 3.1.6.

Item 2: The Reflexive Closure of a Reflexive Relation

Clear.

Item 3: Idempotency

This follows from Item 2.

Item 4: InteractionWith Inverses

Clear.

Item 5: InteractionWith Composition

This follows from Item 2 of Proposition 3.1.4.

3.2 Symmetric Relations 49

3.2 Symmetric Relations

3.2.1 Foundations

Let �be a set.

Definition 3.2.1I Symmetric Relations

A relation ' on � is symmetric if, for each 0, 1 ∈ �, the following conditions are

equivalent:1

1. We have 0 ∼' 1.

2. We have 1 ∼' 0.
1That is, ' is symmetric if '† = '.

Definition 3.2.2I ThePo/Set of Symmetric Relationsona Set

Let �be a set.

1. The set of symmetric relations on � is the subset Relsymm (�, �) of
Rel(�, �) spanned by the symmetric relations.

2. The poset of relations on � is is the subposetRelsymm (�, �) ofRel(�, �)
spanned by the symmetric relations.

Proposition 3.2.3IProperties of Symmetric Relations

Let ' and (be relations on �.

1. InteractionWith Inverses. If ' is symmetric, then so is '†.

2. InteractionWith Composition. If ' and (are symmetric, then so is (� '.

Proof 3.2.4IProofof Proposition 3.2.3

Item 1: InteractionWith Inverses

Clear.

Item 2: InteractionWith Composition

Clear.

3.2.2 The Symmetric Closure of aRelation

Let ' be a relation on �.

3.2 Symmetric Relations 50

Definition 3.2.5I The Symmetric Closureof aRelation

The symmetric closure of∼' is the relation∼symm

'
1 satisfying the following uni-

versal property:2

(UP) Given another symmetric relation∼(on � such that ' ⊂ (, there exists an

inclusion∼symm

'
⊂ ∼(.

1FurtherNotation: Alsowritten 'symm.
2Slogan: The symmetric closure of ' is the smallest symmetric relation containing '.

Construction 3.2.6I The Symmetric Closureof aRelation

Concretely,∼symm

'
is the symmetric relation on �defined by

'symm def
= ' ∪ '†

= {(0, 1) ∈ � × � | we have 0 ∼' 1 or 1 ∼' 0}.

Proof 3.2.7IProofof Construction 3.2.6

Clear.

Proposition 3.2.8IProperties of the Symmetric Closureof aRelation

Let ' be a relation on �.

1. Adjointness.Wehave an adjunction

(
(−)symm a忘

)
:

(−)symm

忘

a

Rel(�, �) Relsymm (�, �),

witnessed by a bijection of sets

Relsymm
(
∼symm

'
,∼(

)
� Rel(∼' ,∼(),

natural in∼' ∈ Obj(Relsymm (�, �)) and∼(∈ Obj(Rel(�, �)).

2. The Symmetric Closure of a Symmetric Relation. If ' is symmetric, then

'symm = '.

3. Idempotency.Wehave

('symm)symm
= 'symm.

3.3 Transitive Relations 51

4. InteractionWith Inverses.Wehave

(
'†

)symm

= ('symm)†,

Rel(�, �) Rel(�, �)

Rel(�, �) Rel(�, �).

(−)symm

(−)† (−)†

(−)symm

5. InteractionWith Composition.Wehave

((� ')symm = (symm � 'symm,

Rel(�, �) × Rel(�, �) Rel(�, �)

Rel(�, �) × Rel(�, �) Rel(�, �).

�

(−)symm×(−)symm (−)symm

�

Proof 3.2.9IProofof Proposition 3.2.8

Item 1: Adjointness

This is a rephrasingof theuniversal propertyof the symmetric closureof a relation,

stated in Definition 3.2.5.

Item 2: The Symmetric Closure of a Symmetric Relation

Clear.

Item 3: Idempotency

This follows from Item 2.

Item 4: InteractionWith Inverses

Clear.

Item 5: InteractionWith Composition

This follows from Item 2 of Proposition 3.2.3.

3.3 TransitiveRelations

3.3.1 Foundations

Let �be a set.

3.3 Transitive Relations 52

Definition 3.3.1I Transitive Relations

A transitive relation is equivalently:1

• A non-unitalE1-monoid in (N• (Rel(�, �)),�);

• A non-unitalmonoid in (Rel(�, �),�).
1Note that sinceRel(�, �) is posetal, transitivity is a property of a relation, instead of a structure.

Remark 3.3.2IUnwindingDefinition 3.3.1

In detail, a relation ' on � is transitive if we have an inclusion

`' : ' � ' ⊂ '

of relations inRel(�, �), i.e. if, for each 0, 2 ∈ �, we have:

(★) If 0 ∼' 1 and 1 ∼' 2, then 0 ∼' 2.

Definition 3.3.3I ThePo/Set of Transitive Relationsona Set

Let �be a set.

1. The set of transitive relations from � to � is the subset Reltrans (�) of
Rel(�, �) spanned by the transitive relations.

2. The poset of relations from � to � is is the subposet Reltrans (�) of
Rel(�, �) spanned by the transitive relations.

Proposition 3.3.4IProperties of Transitive Relations

Let ' and (be relations on �.

1. InteractionWith Inverses. If ' is transitive, then so is '†.

2. InteractionWith Composition. If ' and (are transitive, then (� 'may fail to

be transitive.

Proof 3.3.5IProofof Proposition 3.3.4

Item 1: InteractionWith Inverses

Clear.

3.3 Transitive Relations 53

Item 2: InteractionWith Composition

See [MSE 2096272].1

1Intuition: Transitivity for ' and (fails to imply that of (� ' because the composition operation

for relations intertwines ' and (in an incompatible way:

1. If 0 ∼(�' 2 and 2 ∼(�@ 4, then:

(a) There is some 1 ∈ � such that:

(i) 0 ∼' 1;
(ii) 1 ∼(2;

(b) There is some 3 ∈ � such that:

(i) 2 ∼' 3;
(ii) 3 ∼(4.

3.3.2 The Transitive Closure of aRelation

Let ' be a relation on �.

Definition 3.3.6I The Transitive Closureof aRelation

The transitive closure of∼' is the relation∼trans
'

1 satisfying the following univer-

sal property:2

(UP) Given another transitive relation∼(on � such that ' ⊂ (, there exists an

inclusion∼trans
'

⊂ ∼(.
1FurtherNotation: Alsowritten 'trans.
2Slogan: The transitive closure of ' is the smallest transitive relation containing '.

Construction 3.3.7I The Transitive Closureof aRelation

Concretely, ∼trans
'

is the free non-unital monoid on ' in (Rel(�, �),�)1, being
given by

'trans
def
=

∞∐
<=1

'�<

def
=

∞⋃
<=1

'�<

def
=

{
(0, 1) ∈ � × �

���� there exist (F1, . . . , F<) ∈ '×< such
that 0 ∼' F1 ∼' · · · ∼' F< ∼' 1

}
.

1Or, equivalently, the free non-unitalE1-monoid on ' in (N• (Rel(�, �)) , �) .

3.3 Transitive Relations 54

Proof 3.3.8IProofof Construction 3.3.7

Clear.

Proposition 3.3.9IProperties of the Transitive Closureof aRelation

Let ' be a relation on �.

1. Adjointness.Wehave an adjunction

(
(−)trans a忘

)
:

(−) trans

忘
a
Rel(�, �) Reltrans (�, �),

witnessed by a bijection of sets

Reltrans (∼trans
' ,∼(

)
� Rel(∼' ,∼(),

natural in∼' ∈ Obj
(
Reltrans (�, �)

)
and∼(∈ Obj(Rel(�, �)).

2. TheTransitiveClosure of aTransitiveRelation. If' is transitive, then'trans = '.

3. Idempotency.Wehave (
'trans

) trans
= 'trans.

4. InteractionWith Inverses.Wehave

(
'†

) trans
=

(
'trans

)†
,

Rel(�, �) Rel(�, �)

Rel(�, �) Rel(�, �).

(−) trans

(−)† (−)†

(−) trans

5. InteractionWith Composition.Wehave

((� ')trans
poss

≠ (trans � 'trans,

Rel(�, �) × Rel(�, �) Rel(�, �)

Rel(�, �) × Rel(�, �) Rel(�, �).

�

(−) trans×(−) trans (−) trans

�

×

3.4 Equivalence Relations 55

Proof 3.3.10IProofof Proposition 3.3.9

Item 1: Adjointness

This is a rephrasing of the universal property of the transitive closure of a relation,

stated in Definition 3.3.6.

Item 2: The Transitive Closure of a Transitive Relation

Clear.

Item 3: Idempotency

This follows from Item 2.

Item 4: InteractionWith Inverses

We have (
'†

) trans
=

∞⋃
<=1

(
'†

)�<
(Construction 3.3.7)

=

∞⋃
<=1

(
'�<)† (Item 4 of Proposition 2.11.5)

=

(∞⋃
<=1

'�<

)†
(Item 1 of Proposition 2.5.4)

=
(
'trans

)†
. (Construction 3.3.7)

Item 5: InteractionWith Composition

This follows from Item 2 of Proposition 3.3.4.

3.4 EquivalenceRelations

3.4.1 Foundations

Let �be a set.

Definition 3.4.1I EquivalenceRelations

A relation ' is an equivalence relation if it is reflexive, symmetric, and transitive.1

1Further Terminology: If instead ' is just symmetric and transitive, then it is called a partial equiva-

lence relation.

3.4 Equivalence Relations 56

Example 3.4.2I TheKernel of a Function

The kernel of a function 5 : �→ � is the equivalence∼Ker(5) on �obtained by
declaring 0 ∼Ker(5) 1 iff 5 (0) = 5 (1).1

1The kernel Ker(5) : �→| �of 5 is the inducedmonad of the adjunctionΓ(5) a Γ(5)† : �� �

inRel.

Definition 3.4.3I ThePo/Set of EquivalenceRelationsona Set

Let � and � be sets.

1. The set of equivalence relations from � to � is the subset Releq (�, �) of
Rel(�, �) spanned by the equivalence relations.

2. The poset of relations from � to � is is the subposet Releq (�, �) of
Rel(�, �) spanned by the equivalence relations.

3.4.2 The Equivalence Closure of aRelation

Let ' be a relation on �.

Definition 3.4.4I The Equivalence Closureof aRelation

The equivalence closure1 of∼' is the relation∼eq

'
2 satisfying the following uni-

versal property:3

(UP) Given another equivalence relation∼(on � such that ' ⊂ (, there exists

an inclusion∼eq

'
⊂ ∼(.

1Further Terminology: Also called the equivalence relation associated to∼' .
2FurtherNotation: Alsowritten 'eq.
3Slogan: The equivalence closure of ' is the smallest equivalence relation containing '.

Construction 3.4.5I The Equivalence Closureof aRelation

Concretely,∼eq

'
is the equivalence relation on �defined by

'eq
def
=

((
'refl

)symm) trans
=

(
('symm)trans

) refl

3.4 Equivalence Relations 57

=



(0, 1) ∈ � × �

����������������������

there exist (F1, . . . , F<) ∈ '×< satisfying at least one
of the following conditions:

1. The following conditions are satisfied:

(a) We have 0 ∼' F1 or F1 ∼' 0;
(b) We have F7 ∼' F7+1 or F7+1 ∼' F7 for

each 1 ≤ 7 ≤ < − 1;
(c) We have 1 ∼' F< or F< ∼' 1;

2. We have 0 = 1.



.

Proof 3.4.6IProofof Construction 3.4.5

From the universal properties of the reflexive, symmetric, and transitive closures

of a relation (Definitions 3.1.6, 3.2.5 and 3.3.6), we see that it suffices to prove that:

1. The symmetric closure of a reflexive relation is still reflexive;

2. The transitive closure of a symmetric relation is still symmetric;

which are both clear.

Proposition 3.4.7IProperties of EquivalenceRelations

Let ' be a relation on �.

1. Adjointness.Wehave an adjunction

(
(−)eq a忘

)
:

(−)eq

忘

a

Rel(�, �) Releq (�, �),

witnessed by a bijection of sets

Releq
(
∼eq

'
,∼(

)
� Rel(∼' ,∼(),

natural in∼' ∈ Obj(Releq (�, �)) and∼(∈ Obj(Rel(�, �)).

2. The Equivalence Closure of an Equivalence Relation. If ' is an equivalence rela-

tion, then 'eq = '.

3.5 Quotients by Equivalence Relations 58

3. Idempotency.Wehave

('eq)eq = 'eq.

Proof 3.4.8IProofof Proposition 3.4.7

Item 1: Adjointness

This is a rephrasing of the universal property of the equivalence closure of a rela-

tion, stated in Definition 3.4.4.

Item 2: The Equivalence Closure of an Equivalence Relation

Clear.

Item 3: Idempotency

This follows from Item 2.

3.5 Quotients by EquivalenceRelations

3.5.1 Equivalence Classes

Let �be a set, let ' be a relation on �, and let 0 ∈ �.

Definition 3.5.1I Equivalence Classes

The equivalence class associated to 0 is the set [0] defined by1,2

[0] def
= {F ∈ - | F ∼' 0}
= {F ∈ - | 0 ∼' F}. (since ' is symmetric)

1Note that since ' is symmetric, we have 0 ∈ [0].
2Note that since ' is transitive and symmetric, if F, G ∈ [0], then F ∼' G.

As a consequence, if [0] ∩ [1] ≠ Ø, then [0] = [1].

3.5.2 Quotients of Sets by EquivalenceRelations

Let �be a set and let ' be a relation on �.

Definition 3.5.2IQuotients of Sets by EquivalenceRelations

The quotient of - by ' is the set -/∼' defined by

-/∼'
def
= {[0] ∈ P (-) | 0 ∈ -}.

3.5 Quotients by Equivalence Relations 59

Remark 3.5.3IWhy “Equivalence” Relations forQuotient Sets

The reason we define quotient sets for equivalence relations only is that each

of the properties of being an equivalence relation—reflexivity, symmetry, and

transitivity—ensures that the equivalences classes [0] of - under ' are well-

behaved:

• Reflexivity. If ' is reflexive, then, for each 0 ∈ - , we have 0 ∈ [0].

• Symmetry. The equivalence class [0] of an element 0 of - is defined by

[0] def
= {F ∈ - | F ∼' 0},

but we could equally well define

[0]′ def
= {F ∈ - | 0 ∼' F}

instead. This is not a problemwhen ' is symmetric, as we then have [0] =
[0]′.1

• Transitivity. If ' is transitive, then [0] and [1] are disjoint iff 0 �' 1, and

equal otherwise.

1When categorifying equivalence relations, one finds that [0] and [0]′ correspond to presheaves
and copresheaves; see ConstructionsWith Categories, Definition 11.1.1.

Proposition 3.5.4IProperties ofQuotient Sets

Let 5 : - → . be a function and let ' be a relation on - .

1. The First IsomorphismTheorem for Sets.Wehave an isomorphism of sets1,2

-/∼Ker(5) � Im(5).

2. Descending Functions toQuotient Sets, I. Let ' be an equivalence relation on

- . The following conditions are equivalent:

(a) There exists amap

5 : -/∼' → .

3.5 Quotients by Equivalence Relations 60

making the diagram

- .

-/∼'

5

?

5

∃

commute.

(b) For each F, G ∈ - , if F ∼' G, then 5 (F) = 5 (G).

3. Descending Functions toQuotient Sets, II. Let ' be an equivalence relation on

- . If the conditions of Item 2 hold, then 5 is the uniquemapmaking the

diagram

- .

-/∼'

5

?

5

∃!

commute.

4. Descending Functions to Quotient Sets, III. Let ' be an equivalence relation

on - . If the conditions of Item 2 hold, then the following conditions are

equivalent:

(a) Themap 5 is an injection.

(b) For each F, G ∈ - , we have F ∼' G iff 5 (F) = 5 (G).

5. Descending Functions to Quotient Sets, IV. Let ' be an equivalence relation

on - . If the conditions of Item 2 hold, then the following conditions are

equivalent:

(a) Themap 5 : - → . is surjective.

(b) Themap 5 : -/∼' → . is surjective.

6. Descending Functions toQuotient Sets, V. Let ' be a relation on - and let∼eq

'

be the equivalence relation associated to '. The following conditions are

equivalent:

(a) Themap 5 satisfies the equivalent conditions of Item 2:

3.5 Quotients by Equivalence Relations 61

• There exists amap

5 : -/∼eq

'
→ .

making the diagram

- .

-/∼eq

'

5

?

5

∃

commute.

• For each F, G ∈ - , if F ∼eq

'
G, then 5 (F) = 5 (G).

(b) For each F, G ∈ - , if F ∼' G, then 5 (F) = 5 (G).
1Further Terminology: The set -/∼Ker(5) is often called the coimageof 5 , and denoted by Coim(5) .
2In a sense this is a result relating themonad inRel inducedby 5 with the comonad inRel induced

by 5 :

(a) The kernel Ker(5) : - →| - of 5 is the inducedmonad of the adjunctionΓ(5) a Γ(5)† : - �
. inRel;

(b) The image Im(5) ⊂ . of 5 is the induced comonad of the adjunctionΓ(5) a Γ(5)† : - � .

inRel.

Proof 3.5.5IProofof Proposition 3.5.4

Item 1: The First Isomorphism Theorem for Sets

Clear.

Item 2: Descending Functions to Quotient Sets, I

See [Pro23c].

Item 3: Descending Functions to Quotient Sets, II

See [Pro23d].

Item 4: Descending Functions to Quotient Sets, III

See [Pro23a].

Item 5: Descending Functions to Quotient Sets, IV

See [Pro23b].

Item 6: Descending Functions to Quotient Sets, V

62

The implication Item (a) =⇒ Item (b) is clear.

Conversely, suppose that, for each F, G ∈ - , if F ∼' G, then 5 (F) = 5 (G).
Spelling out the definition of the equivalence closure of ', we see that the condi-

tion F ∼eq

'
G unwinds to the following:

(★) There exist (F1, . . . , F<) ∈ '×< satisfying at least one of the following
conditions:

1. The following conditions are satisfied:

(a) We have F ∼' F1 or F1 ∼' F;
(b) We have F7 ∼' F7+1 or F7+1 ∼' F7 for each 1 ≤ 7 ≤ < − 1;
(c) We have G ∼' F< or F< ∼' G;

2. We have F = G.

Now, if F = G, then 5 (F) = 5 (G) trivially; otherwise, we have

5 (F) = 5 (F1),
5 (F1) = 5 (F2),

...

5 (F<−1) = 5 (F<),
5 (F<) = 5 (G),

and 5 (F) = 5 (G), as wewanted to show.

4 Functoriality of Powersets

4.1 Direct Images

Let � and � be sets and let ' : �→| � be a relation.

Definition 4.1.1IDirect Images

The direct image function associated to ' is the function1

'∗ : P (�) → P (�)

defined by2,3

'∗ (*)
def
= '(*)

4.1 Direct Images 63

def
=

⋃
0∈*

'(0)

=

{
1 ∈ �

���� there exists some 0 ∈
* such that 1 ∈ '(0)

}
for each* ∈ P (�).

1FurtherNotation: Alsowritten ∃' : P (�) → P (�) . This notation comes from the fact that the

following statements are equivalent, where 1 ∈ � and* ∈ P (�) :
• We have 1 ∈ ∃' (*) .
• There exists some 0 ∈ * such that 1 ∈ 5 (0) .

2Further Terminology: The set ' (*) is called the direct image of* by '.
3Wealso have

'∗ (*) = � \ '! (� *);
see Item 7 of Proposition 4.1.3.

Remark 4.1.2IUnwindingDefinition 4.1.1

Identifying subsets of �with relations frompt to � via ConstructionsWith Sets,

Item 7 of Proposition 3.2.3, we see that the direct image function associated to '

is equivalently the function

'∗ : P (�)︸︷︷︸
�Rel(pt,�)

→ P (�)︸︷︷︸
�Rel(pt,�)

defined by

'∗ (*)
def
= ' �*

for each* ∈ P (�), where ' �* is the composition

pt
*

−→| �
'

−→| �.

Proposition 4.1.3IProperties ofDirect Image Functions

Let ' : �→| � be a relation.

1. Functoriality. The assignment* ↦→ '∗ (*) defines a functor

'∗ : (P (�), ⊂) → (P (�), ⊂)

where

4.1 Direct Images 64

• Action onObjects. For each* ∈ P (�), we have

['∗] (*)
def
= '∗ (*);

• Action onMorphisms. For each*, + ∈ P (�):
• If* ⊂ + , then '∗ (*) ⊂ '∗ (+).

2. Adjointness.Wehave an adjunction

('∗ a '−1):
'∗

'−1
aP (�) P (�),

witnessed by a bijections of sets

HomP (�) ('∗ (*), +) � HomP (�) (*, '−1 (+)),

natural in* ∈ P (�) and+ ∈ P (�), i.e. such that:

(★) The following conditions are equivalent:

(a) We have '∗ (*) ⊂ + ;

(b) We have* ⊂ '−1 (+).

3. Preservation of Colimits.Wehave an equality of sets

'∗

(⋃
7∈ �

*7

)
=

⋃
7∈ �

'∗ (*7),

natural in {*7}7∈ � ∈ P (�)×� . In particular, we have equalities

'∗ (*) ∪ '∗ (+) = '∗ (* ∪ +),
'∗ (Ø) = Ø,

natural in*, + ∈ P (�).

4. Oplax Preservation of Limits.Wehave an inclusion of sets

'∗

(⋂
7∈ �

*7

)
⊂

⋂
7∈ �

'∗ (*7),

natural in {*7}7∈ � ∈ P (�)×� . In particular, we have inclusions

'∗ (* ∩ +) ⊂ '∗ (*) ∩ '∗ (+),
'∗ (�) ⊂ �,

natural in*, + ∈ P (�).

4.1 Direct Images 65

5. Symmetric StrictMonoidalityWith Respect toUnions. The direct image func-

tion of Item 1 has a symmetric strictmonoidal structure(
'∗, '

⊗
∗ , '

⊗
∗|1

)
: (P (�),∪,Ø) → (P (�),∪,Ø),

being equippedwith equalities

'⊗
∗|*,+ : '∗ (*) ∪ '∗ (+)

=→ '∗ (* ∪ +),

'⊗
∗|1 : Ø =→ Ø,

natural in*, + ∈ P (�).

6. Symmetric OplaxMonoidalityWith Respect to Intersections. The direct image

function of Item 1 has a symmetric oplaxmonoidal structure(
'∗, '

⊗
∗ , '

⊗
∗|1

)
: (P (�),∩, �) → (P (�),∩, �),

being equippedwith inclusions

'⊗
∗|*,+ : '∗ (* ∩ +) ⊂ '∗ (*) ∩ '∗ (+),

'⊗
∗|1 : '∗ (�) ⊂ �,

natural in*, + ∈ P (�).

7. Relation toDirect ImagesWith Compact Support.Wehave

'∗ (*) = � \ '! (� *)

for each* ∈ P (�).

Proof 4.1.4IProofof Proposition 4.1.3

Item 1: Functoriality

Clear.

Item 2: Adjointness

This follows fromKan Extensions, Item 2 of Proposition 1.1.6.

Item 3: Preservation of Colimits

4.1 Direct Images 66

This follows from ?? and Categories, ?? of Proposition 6.1.3.

Item 4: Oplax Preservation of Limits

Omitted.

Item 5: Symmetric StrictMonoidalityWith Respect to Unions

This follows from Item 3.

Item 6: Symmetric OplaxMonoidalityWith Respect to Intersections

This follows from ??.

Item 7: Relation to Direct ImagesWith Compact Support

The proof proceeds in the same way as in the case of functions (Constructions

With Sets, Item 7 of Proposition 3.3.3): applying Item 7 of Proposition 4.4.3 to

� * , we have

'! (� *) = � \ '∗ (� \ (� *))
= � \ '∗ (*).

Taking complements, we then obtain

'∗ (*) = � \ (� \ '∗ (*)),
= � \ '! (� *),

which finishes the proof.

Proposition 4.1.5IProperties of theDirect Image FunctionOperation

Let ' : �→| � be a relation.

1. Functionality I.The assignment ' ↦→ '∗ defines a function

(−)∗ : Rel(�, �) → Sets(P (�),P (�)).

2. Functionality II.The assignment ' ↦→ '∗ defines a function

(−)∗ : Rel(�, �) → Pos((P (�), ⊂), (P (�), ⊂)).

3. InteractionWith Identities. For each � ∈ Obj(Sets), we have1

(j�)∗ = idP (�) ;

4.1 Direct Images 67

4. InteractionWithComposition. For eachpair of composable relations' : �→|
� and (: � →| �, we have2

((� ')∗ = (∗ ◦ '∗,

P (�) P (�)

P (�).

'∗

((�')∗
(∗

1That is, the postcomposition

(j�)∗ : Rel(pt, �) → Rel(pt, �)

is equal to idRel(pt,�) .
2That is, we have

((� ')∗ = (∗ ◦ '∗ ,

Rel(pt, �) Rel(pt, �)

Rel(pt, �) .

'∗

((�')∗
(∗

Proof 4.1.6IProofof Proposition 4.1.5

Item 1: Functionality I

Clear.

Item 2: Functionality II

Clear.

Item 3: InteractionWith Identities

Indeed, we have

(j�)∗ (*)
def
=

⋃
0∈*

j�(0)

def
=

⋃
0∈*

{0}

= *
def
= idP (�) (*)

for each* ∈ P (�). Thus (j�)∗ = idP (�) .

Item 4: InteractionWith Composition

4.2 Strong Inverse Images 68

Indeed, we have

((� ')∗ (*)
def
=

⋃
0∈*

[(� '] (0)

def
=

⋃
0∈*

(('(0))

def
=

⋃
0∈*

(∗ ('(0))

= (∗

(⋃
0∈*

'(0)
)

def
= (∗ ('∗ (*))
def
= [(∗ ◦ '∗] (*)

for each* ∈ P (�), wherewe used Item 3 of Proposition 4.1.3. Thus ((� ')∗ =
(∗ ◦ '∗.

4.2 Strong Inverse Images

Let � and � be sets and let ' : �→| � be a relation.

Definition 4.2.1I Strong Inverse Images

The strong inverse image function associated to ' is the function

'−1 : P (�) → P (�)

defined by1

'−1 (+)
def
= {0 ∈ � | '(0) ⊂ + }

for each+ ∈ P (�).
1Further Terminology: The set '−1 (+) is called the strong inverse image of+ by '.

Remark 4.2.2IUnwindingDefinition 4.2.1

Identifying subsets of �with relations frompt to � via ConstructionsWith Sets,

Item 7 of Proposition 3.2.3, we see that the inverse image function associated to

4.2 Strong Inverse Images 69

' is equivalently the function

'−1 : P (�)︸︷︷︸
�Rel(pt,�)

→ P (�)︸︷︷︸
�Rel(pt,�)

defined by

'−1 (+)
def
= Rift' (+),

�

pt �,

'

Rift' (+)

+

and being explicitly computed by

'−1 (+)
def
= Rift' (+)

�

∫
F∈�

Hom{t,f}
(
'F−1 , +

F
−2

)
.

Thus, we have

'−1 (+) �
{
0 ∈ �

���� ∫
F∈�

Hom{t,f}
(
'F0 , +

F
★

)
= true

}

=


0 ∈ �

�����������������

for each F ∈ �, at least one of the follow-
ing conditions hold:

1. We have 'F0 = false;

2. The following conditions hold:

(a) We have 'F0 = true;
(b) We have+ F

★ = true;



=


0 ∈ �

�����������������

for each F ∈ �, at least one of the follow-
ing conditions hold:

1. We have F 6∈ '(0);

2. The following conditions hold:

(a) We have F ∈ '(0);
(b) We have F ∈ + ;



4.2 Strong Inverse Images 70

= {0 ∈ � | for each F ∈ '(0), we have F ∈ + }
= {0 ∈ � | '(0) ⊂ + }.

Proposition 4.2.3IProperties of Strong Inverse Images

Let ' : �→| � be a relation.

1. Functoriality. The assignment+ ↦→ '−1 (+) defines a functor

'−1 : (P (�), ⊂) → (P (�), ⊂)

where

• Action onObjects. For each+ ∈ P (�), we have

['−1] (+)
def
= '−1 (+);

• Action onMorphisms. For each*, + ∈ P (�):
• If* ⊂ + , then '−1 (*) ⊂ '−1 (+).

2. Adjointness.Wehave an adjunction

('∗ a '−1):
'∗

'−1

aP (�) P (�),

witnessed by a bijections of sets

HomP (�) ('∗ (*), +) � HomP (�) (*, '−1 (+)),

natural in* ∈ P (�) and+ ∈ P (�), i.e. such that:

(★) The following conditions are equivalent:

(a) We have '∗ (*) ⊂ + ;

(b) We have* ⊂ '−1 (+).

3. Lax Preservation of Colimits.Wehave an inclusion of sets⋃
7∈ �

'−1 (*7) ⊂ '−1

(⋃
7∈ �

*7

)
,

4.2 Strong Inverse Images 71

natural in {*7}7∈ � ∈ P (�)×� . In particular, we have inclusions

'−1 (*) ∪ '−1 (+) ⊂ '−1 (* ∪ +),
Ø ⊂ '−1 (Ø),

natural in*, + ∈ P (�).

4. Preservation of Limits.Wehave an equality of sets

'−1

(⋂
7∈ �

*7

)
=

⋂
7∈ �

'−1 (*7),

natural in {*7}7∈ � ∈ P (�)×� . In particular, we have equalities

'−1 (* ∩ +) = '−1 (*) ∩ '−1 (+),
'−1 (�) = �,

natural in*, + ∈ P (�).

5. Symmetric Lax Monoidality With Respect to Unions. The direct image with

compact support functionof Item1has a symmetric laxmonoidal structure(
'−1, '

⊗
−1, '

⊗
−1 |1

)
: (P (�),∪,Ø) → (P (�),∪,Ø),

being equippedwith inclusions

'⊗
−1 |*,+ : '−1 (*) ∪ '−1 (+) ⊂ '−1 (* ∪ +),

'⊗
−1 |1 : Ø ⊂ '−1 (Ø),

natural in*, + ∈ P (�).

6. Symmetric StrictMonoidalityWith Respect to Intersections. The direct image

function of Item 1 has a symmetric strictmonoidal structure(
'−1, '

⊗
−1, '

⊗
−1 |1

)
: (P (�),∩, �) → (P (�),∩, �),

being equippedwith equalities

'⊗
−1 |*,+ : '−1 (* ∩ +) =→ '−1 (*) ∩ '−1 (+),

'⊗
−1 |1 : '−1 (�)

=→ �,

natural in*, + ∈ P (�).

4.2 Strong Inverse Images 72

7. InteractionWithWeak Inverse Images. Let ' : �→| � be a relation from � to

�.

(a) If ' is a total relation, thenwe have an inclusion of sets

'−1 (+) ⊂ '−1 (+)

natural in+ ∈ P (�). We also have equalities

'−1 (� \ +) = � \ '−1 (+),
'−1 (� \ +) = � \ '−1 (+)

for each+ ∈ P (�).
(b) If ' is total and functional, then the above inclusion is in fact an

equality.

(c) Conversely, if we have '−1 = '−1, then ' is total and functional.

Proof 4.2.4IProofof Proposition 4.2.3

Item 1: Functoriality

Clear.

Item 2: Adjointness

This follows fromKan Extensions, Item 2 of Proposition 1.1.6.

Item 3: Lax Preservation of Colimits

Omitted.

Item 4: Preservation of Limits

This follows from Item 2 and Categories, ?? of Proposition 6.1.3.

Item 5: Symmetric LaxMonoidalityWith Respect to Unions

This follows from ??.

Item 6: Symmetric StrictMonoidalityWith Respect to Intersections

This follows from Item 4.

Item 7: InteractionWithWeak Inverse Images

The first part of ?? is clear, while the second follows by noting that

� \ '−1 (+) = {0 ∈ � | '(0) ⊄ + },

4.2 Strong Inverse Images 73

'−1 (� \ +) = {0 ∈ � | '(0) \ + ≠ Ø},
'−1 (� \ +) = {0 ∈ � | '(0) ⊂ � \ + },
� \ '−1 (+) = {0 ∈ � | '(0) ∩ + = Ø}.

???? follow from Item 5 of Proposition 2.1.2.

Proposition 4.2.5IProperties of the Strong Inverse Image Function Op-

eration

Let ' : �→| � be a relation.

1. Functionality I.The assignment ' ↦→ '−1 defines a function

(−)−1 : Sets(�, �) → Sets(P (�),P (�)).

2. Functionality II.The assignment ' ↦→ '−1 defines a function

(−)−1 : Sets(�, �) → Pos((P (�), ⊂), (P (�), ⊂)).

3. InteractionWith Identities. For each � ∈ Obj(Sets), we have

(id�)−1 = idP (�) ;

4. InteractionWithComposition. For eachpair of composable relations' : �→|
� and (: � →| �, we have

((� ')−1 = '−1 ◦ (−1,

P (�) P (�)

P (�).

(−1

((�')−1
'−1

Proof 4.2.6IProofof Proposition 4.2.5

Item 1: Functionality I

Clear.

Item 2: Functionality II

4.3 Weak Inverse Images 74

Clear.

Item 3: InteractionWith Identities

Indeed, we have

(j�)−1 (*)
def
= {0 ∈ � | j�(0) ⊂ *}
def
= {0 ∈ � | {0} ⊂ *}
= *

for each* ∈ P (�). Thus (j�)−1 = idP (�) .

Item 4: InteractionWith Composition

Indeed, we have

((� ')−1 (*)
def
= {0 ∈ � | [(� '] (0) ⊂ *}
def
= {0 ∈ � | (('(0)) ⊂ *}
def
= {0 ∈ � | (∗ ('(0)) ⊂ *}
= {0 ∈ � | '(0) ⊂ (−1 (*)}
def
= '−1 ((−1 (*))
def
= ['−1 ◦ (−1] (*)

for each* ∈ P (�), where we used Item 2 of Proposition 4.2.3, which implies

that the conditions

• We have (∗ ('(0)) ⊂ * ;

• We have '(0) ⊂ (−1 (*);

are equivalent. Thus ((� ')−1 = '−1 ◦ (−1.

4.3 Weak Inverse Images

Let � and � be sets and let ' : �→| � be a relation.

Definition 4.3.1IWeak Inverse Images

Theweak inverse image function associated to '1 is the function

'−1 : P (�) → P (�)

4.3 Weak Inverse Images 75

defined by2

'−1 (+) def
= {0 ∈ � | '(0) ∩ + ≠ Ø}

for each+ ∈ P (�).
1Further Terminology: Also called simply the inverse image function associated to '.
2Further Terminology: The set '−1 (+) is called theweak inverse image of+ by ' or simply the

inverse image of+ by '.

Remark 4.3.2IUnwindingDefinition 4.3.1

Identifying subsets of �with relations from � to pt via ConstructionsWith Sets,

Item7ofProposition3.2.3,wesee that theweak inverse image functionassociated

to ' is equivalently the function

'−1 : P (�)︸︷︷︸
�Rel(�,pt)

→ P (�)︸︷︷︸
�Rel(�,pt)

defined by

'−1 (+) def
= + � '

for each+ ∈ P (�), where ' � + is the composition

�
'

−→| �
+

−→| pt.

Explicitly, we have

'−1 (+) def
= + � '
def
=

∫ F∈�
+−1
F × 'F−2 ,

and thus '−1 (+) is the subset of �given by

'−1 (+) �
{
0 ∈ �

���� ∫ F∈�
+★
F × 'F0 = true

}

=


0 ∈ �

�����������
there exists F ∈ � such that the follow-

ing conditions hold:

1. We have+★
F = true;

2. We have 'F0 = true;



4.3 Weak Inverse Images 76

=


0 ∈ �

�����������
there exists F ∈ � such that the follow-

ing conditions hold:

1. We have F ∈ + ;

2. We have F ∈ '(0);


= {0 ∈ � | there exists F ∈ + such that F ∈ '(0)}
= {0 ∈ � | '(0) ∩ + ≠ Ø}.

Proposition 4.3.3IProperties ofWeak Inverse Image Functions

Let ' : �→| � be a relation.

1. Functoriality. The assignment+ ↦→ '−1 (+) defines a functor

'−1 : (P (�), ⊂) → (P (�), ⊂)

where

• Action onObjects. For each+ ∈ P (�), we have[
'−1] (+) def

= '−1 (+);

• Action onMorphisms. For each*, + ∈ P (�):
• If* ⊂ + , then '−1 (*) ⊂ '−1 (+).

2. Adjointness.Wehave an adjunction

(
'−1 a '!

)
:

'−1

'!

aP (�) P (�),

witnessed by a bijections of sets

HomP (�)
(
'−1 (*), +

)
� HomP (�) (*, '! (+)),

natural in* ∈ P (�) and+ ∈ P (�), i.e. such that:

(★) The following conditions are equivalent:

(a) We have '−1 (*) ⊂ + ;

(b) We have* ⊂ '! (+).

4.3 Weak Inverse Images 77

3. Preservation of Colimits.Wehave an equality of sets

'−1

(⋃
7∈ �

*7

)
=

⋃
7∈ �

'−1 (*7),

natural in {*7}7∈ � ∈ P (�)×� . In particular, we have equalities

'−1 (*) ∪ '−1 (+) = '−1 (* ∪ +),
'−1 (Ø) = Ø,

natural in*, + ∈ P (�).

4. Oplax Preservation of Limits.Wehave an inclusion of sets

'−1

(⋂
7∈ �

*7

)
⊂

⋂
7∈ �

'−1 (*7),

natural in {*7}7∈ � ∈ P (�)×� . In particular, we have inclusions

'−1 (* ∩ +) ⊂ '−1 (*) ∩ '−1 (+),
'−1 (�) ⊂ �,

natural in*, + ∈ P (�).

5. Symmetric StrictMonoidalityWith Respect toUnions. The direct image func-

tion of Item 1 has a symmetric strictmonoidal structure(
'−1, '−1,⊗ , '−1,⊗

1

)
: (P (�),∪,Ø) → (P (�),∪,Ø),

being equippedwith equalities

'
−1,⊗
*,+

: '−1 (*) ∪ '−1 (+) =→ '−1 (* ∪ +),

'
−1,⊗
1 : Ø =→ Ø,

natural in*, + ∈ P (�).

6. Symmetric OplaxMonoidalityWith Respect to Intersections. The direct image

function of Item 1 has a symmetric oplaxmonoidal structure(
'−1, '−1,⊗ , '−1,⊗

1

)
: (P (�),∩, �) → (P (�),∩, �),

4.3 Weak Inverse Images 78

being equippedwith inclusions

'
−1,⊗
*,+

: '−1 (* ∩ +) ⊂ '−1 (*) ∩ '−1 (+),

'
−1,⊗
1 : '−1 (�) ⊂ �,

natural in*, + ∈ P (�).

7. InteractionWith Strong Inverse Images. Let ' : �→| � be a relation from �

to �.

(a) If ' is a total relation, thenwe have an inclusion of sets

'−1 (+) ⊂ '−1 (+)

natural in+ ∈ P (�). We also have equalities

'−1 (� \ +) = � \ '−1 (+),
'−1 (� \ +) = � \ '−1 (+)

for each+ ∈ P (�).
(b) If ' is total and functional, then the above inclusion is in fact an

equality.

(c) Conversely, if we have '−1 = '−1, then ' is total and functional.

Proof 4.3.4IProofof Proposition 4.3.3

Item 1: Functoriality

Clear.

Item 2: Adjointness

This follows fromKan Extensions, Item 2 of Proposition 1.1.6.

Item 3: Preservation of Colimits

This follows from ?? and Categories, ?? of Proposition 6.1.3.

Item 4: Oplax Preservation of Limits

Omitted.

Item 5: Symmetric StrictMonoidalityWith Respect to Unions

This follows from Item 3.

4.3 Weak Inverse Images 79

Item 6: Symmetric OplaxMonoidalityWith Respect to Intersections

This follows from ??.

Item 7: InteractionWith Strong Inverse Images

This was proved in Item 7 of Item 7.

Proposition 4.3.5IProperties of theWeak Inverse Image Function Oper-

ation

Let ' : �→| � be a relation.

1. Functionality I.The assignment ' ↦→ '−1 defines a function

(−)−1 : Rel(�, �) → Sets(P (�),P (�)).

2. Functionality II.The assignment ' ↦→ '−1 defines a function

(−)−1 : Rel(�, �) → Pos((P (�), ⊂), (P (�), ⊂)).

3. InteractionWith Identities. For each � ∈ Obj(Sets), we have1

(j�)−1 = idP (�) ;

4. InteractionWithComposition. For eachpair of composable relations' : �→|
� and (: � →| �, we have2

((� ')−1 = '−1 ◦ (−1,

P (�) P (�)

P (�).

(−1

((�')−1 '−1

1That is, the postcomposition

(j�)−1 : Rel(pt, �) → Rel(pt, �)

is equal to idRel(pt,�) .
2That is, we have

((� ')−1 = '−1 ◦ (−1 ,

Rel(pt, �) Rel(pt, �)

Rel(pt, �) .

'−1

((�')−1 (−1

4.4 Direct ImagesWith Compact Support 80

Proof 4.3.6IProofof Proposition 4.3.5

Item 1: Functionality I

Clear.

Item 2: Functionality II

Clear.

Item 3: InteractionWith Identities

This follows fromCategories, Item 5 of Proposition 1.4.3.

Item 4: InteractionWith Composition

This follows fromCategories, Item 2 of Proposition 1.4.3.

4.4 Direct ImagesWith Compact Support

Let � and � be sets and let ' : �→| � be a relation.

Definition 4.4.1IDirect ImagesWithCompact Support

The direct imagewith compact support function associated to ' is the function1

'! : P (�) → P (�)

defined by2,3

'! (*)
def
=

{
1 ∈ �

���� for each 0 ∈ �, if we have

1 ∈ '(0), then 0 ∈ *

}
=

{
1 ∈ �

�� '−1 (1) ⊂ *
}

for each* ∈ P (�).
1FurtherNotation: Alsowritten ∀' : P (�) → P (�) . This notation comes from the fact that the

following statements are equivalent, where 1 ∈ � and* ∈ P (�) :
• We have 1 ∈ ∀' (*) .
• For each 0 ∈ �, if 1 ∈ ' (0) , then 0 ∈ * .

2Further Terminology: The set '! (*) is called the direct imagewith compact support of* by '.
3Wealso have

'! (*) = � \ '∗ (� *);
see Item 7 of Proposition 4.4.3.

4.4 Direct ImagesWith Compact Support 81

Remark 4.4.2IUnwindingDefinition 4.4.1

Identifying subsets of �with relations frompt to � via ConstructionsWith Sets,

Item 7 of Proposition 3.2.3, we see that the direct imagewith compact support

function associated to ' is equivalently the function

'! : P (�)︸︷︷︸
�Rel(�,pt)

→ P (�)︸︷︷︸
�Rel(�,pt)

defined by

'! (*)
def
= Ran' (*),

�

� pt,

Ran' (*)
'

*

being explicitly computed by

'∗ (*) def
= Ran' (*)

�

∫
0∈�

Hom{t,f}
(
'−2
0 , *

−1
0

)
.

Thus, we have

'−1 (*) �
{
1 ∈ �

���� ∫
0∈�

Hom{t,f}
(
'10, *

★
0

)
= true

}

=


1 ∈ �

�����������������

for each 0 ∈ �, at least one of the follow-

ing conditions hold:

1. We have '10 = false;

2. The following conditions hold:

(a) We have '10 = true;
(b) We have*★

0 = true;



4.4 Direct ImagesWith Compact Support 82

=


1 ∈ �

�����������������

for each 0 ∈ �, at least one of the follow-

ing conditions hold:

1. We have 1 6∈ '(0);

2. The following conditions hold:

(a) We have 1 ∈ '(0);
(b) We have 0 ∈ * ;


= {1 ∈ � | for each 0 ∈ �, if 1 ∈ '(0), then 0 ∈ * . }
=

{
1 ∈ �

�� '−1 (1) ⊂ *
}
.

Proposition 4.4.3IProperties ofDirect ImagesWithCompact Support

Let ' : �→| � be a relation.

1. Functoriality. The assignment* ↦→ '! (*) defines a functor

'! : (P (�), ⊂) → (P (�), ⊂)

where

• Action onObjects. For each* ∈ P (�), we have

['!] (*)
def
= '! (*);

• Action onMorphisms. For each*, + ∈ P (�):
• If* ⊂ + , then '! (*) ⊂ '! (+).

2. Adjointness.Wehave an adjunction

(
'−1 a '!

)
:

'−1

'!

aP (�) P (�),

witnessed by a bijections of sets

HomP (�)
(
'−1 (*), +

)
� HomP (�) (*, '! (+)),

natural in* ∈ P (�) and+ ∈ P (�), i.e. such that:

4.4 Direct ImagesWith Compact Support 83

(★) The following conditions are equivalent:

(a) We have '−1 (*) ⊂ + ;

(b) We have* ⊂ '! (+).

3. Lax Preservation of Colimits.Wehave an inclusion of sets⋃
7∈ �

'! (*7) ⊂ '!

(⋃
7∈ �

*7

)
,

natural in {*7}7∈ � ∈ P (�)×� . In particular, we have inclusions

'! (*) ∪ '! (+) ⊂ '! (* ∪ +),
Ø ⊂ '! (Ø),

natural in*, + ∈ P (�).

4. Preservation of Limits.Wehave an equality of sets

'!

(⋂
7∈ �

*7

)
=

⋂
7∈ �

'! (*7),

natural in {*7}7∈ � ∈ P (�)×� . In particular, we have equalities

'! (* ∩ +) = '! (*) ∩ '! (+),
'! (�) = �,

natural in*, + ∈ P (�).

5. Symmetric Lax Monoidality With Respect to Unions. The direct image with

compact support functionof Item1has a symmetric laxmonoidal structure(
'!, '

⊗
! , '

⊗
! |1

)
: (P (�),∪,Ø) → (P (�),∪,Ø),

being equippedwith inclusions

'⊗
! |*,+ : '! (*) ∪ '! (+) ⊂ '! (* ∪ +),

'⊗
! |1 : Ø ⊂ '! (Ø),

natural in*, + ∈ P (�).

4.4 Direct ImagesWith Compact Support 84

6. Symmetric StrictMonoidalityWith Respect to Intersections. The direct image

function of Item 1 has a symmetric strictmonoidal structure(
'!, '

⊗
! , '

⊗
! |1

)
: (P (�),∩, �) → (P (�),∩, �),

being equippedwith equalities

'⊗
! |*,+ : '! (* ∩ +) =→ '! (*) ∩ '! (+),

'⊗
! |1 : '! (�)

=→ �,

natural in*, + ∈ P (�).

7. Relation toDirect Images.Wehave

'! (*) = � \ '∗ (� *)

for each* ∈ P (�).

Proof 4.4.4IProofof Proposition 4.4.3

Item 1: Functoriality

Clear.

Item 2: Adjointness

This follows fromKan Extensions, Item 2 of Proposition 1.1.6.

Item 3: Lax Preservation of Colimits

Omitted.

Item 4: Preservation of Limits

This follows from Item 2 and Categories, ?? of Proposition 6.1.3.

Item 5: Symmetric LaxMonoidalityWith Respect to Unions

This follows from ??.

Item 6: Symmetric StrictMonoidalityWith Respect to Intersections

This follows from Item 4.

Item 7: Relation to Direct Images

Aswith Item 7 of Proposition 4.1.3, the proof proceeds in the sameway as in the

case of functions (ConstructionsWith Sets, Item 7 of Proposition 3.5.5): We claim

4.4 Direct ImagesWith Compact Support 85

that '! (*) = � \ '∗ (� *).

• The First Implication.We claim that

'! (*) ⊂ � \ '∗ (� *).

Let 1 ∈ '! (*). We need to show that 1 6∈ '∗ (� *), i.e. that there is no
0 ∈ � * such that 1 ∈ '(0).
This is indeed the case, as otherwisewewould have 0 ∈ '−1 (1) and 0 6∈ * ,
contradicting '−1 (1) ⊂ * (which holds since 1 ∈ '! (*)).
Thus 1 ∈ � \ '∗ (� *).

• The Second Implication.We claim that

� \ '∗ (� *) ⊂ '! (*).

Let 1 ∈ �\'∗ (� *). Weneed to showthat 1 ∈ '! (*), i.e. that'−1 (1) ⊂
* .

Since 1 6∈ '∗ (� *), there exists no 0 ∈ � \ * such that 1 ∈ '(0), and
hence '−1 (1) ⊂ * .

Thus 1 ∈ '! (*).

This finishes the proof.

Proposition 4.4.5IPropertiesoftheDirect ImageWithCompactSupport

FunctionOperation

Let ' : �→| � be a relation.

1. Functionality I.The assignment ' ↦→ '! defines a function

(−)! : Sets(�, �) → Sets(P (�),P (�)).

2. Functionality II.The assignment ' ↦→ '! defines a function

(−)! : Sets(�, �) → HomPos ((P (�), ⊂), (P (�), ⊂)).

3. InteractionWith Identities. For each � ∈ Obj(Sets), we have

(id�)! = idP (�) ;

4.4 Direct ImagesWith Compact Support 86

4. InteractionWithComposition. For eachpair of composable relations' : �→|
� and (: � →| �, we have

((� ')! = (! ◦ '!,

P (�) P (�)

P (�).

'!

((�') !
(!

Proof 4.4.6IProofof Proposition 4.4.5

Item 1: Functionality I

Clear.

Item 2: Functionality II

Clear.

Item 3: InteractionWith Identities

Indeed, we have

(j�)! (*)
def
=

{
0 ∈ �

�� j−1
� (0) ⊂ *

}
def
= {0 ∈ � | {0} ⊂ *}
= *

for each* ∈ P (�). Thus (j�)! = idP (�) .

Item 4: InteractionWith Composition

Indeed, we have

((� ')! (*)
def
=

{
2 ∈ �

�� [(� ']−1 (2) ⊂ *
}

def
=

{
2 ∈ �

��� (−1
(
'−1 (2)

)
⊂ *

}
=

{
2 ∈ �

�� '−1 (2) ⊂ (! (*)
}

def
= '! ((! (*))
def
= ['! ◦ (!] (*)

for each* ∈ P (�), where we used Item 2 of Proposition 4.4.3, which implies

that the conditions

• We have (−1 ('−1 (2)
)
⊂ * ;

4.5 Functoriality of Powersets 87

• We have '−1 (2) ⊂ (! (*);

are equivalent. Thus ((� ')! = (! ◦ '!.

4.5 Functoriality of Powersets

Proposition 4.5.1I Functoriality of Powersets I

The assignment - ↦→ P (-) defines functors1

P∗ : Rel → Sets,
P−1 : Relop → Sets,
P−1 : Relop → Sets,
P! : Rel → Sets

where

• Action onObjects. For each � ∈ Obj(Rel), we have

P∗ (�)
def
= P (�),

P−1 (�)
def
= P (�),

P−1 (�) def
= P (�),

P! (�)
def
= P (�);

• Action onMorphisms. For eachmorphism ' : �→| � of Rel, the images

P∗ (') : P (�) → P (�),
P−1 (') : P (�) → P (�),
P−1 (') : P (�) → P (�),
P! (') : P (�) → P (�)

of ' byP∗,P−1,P−1, andP! are defined by

P∗ (')
def
= '∗,

P−1 (')
def
= '−1,

P−1 (') def
= '−1,

P! (')
def
= '!,

as in Definitions 4.1.1, 4.2.1, 4.3.1 and 4.4.1.

1The functorP∗ : Rel → Sets admits a left adjoint; see Item 3 of Proposition 2.1.2.

4.6 Functoriality of Powersets: Relations on Powersets 88

Proof 4.5.2IProofof Proposition 4.5.1

This follows from Items 3 and 4 of Proposition 4.1.5, Items 3 and 4 of Proposi-

tion 4.2.5, Items 3 and4of Proposition 4.3.5, and Items 3 and4of Proposition 4.4.5.

4.6 Functoriality of Powersets: Relations onPowersets

Let � and � be sets and let ' : �→| � be a relation.

Definition 4.6.1I TheRelationonPowersetsAssociated toaRelation

The relation onpowersets associated to ' is the relation

P (') : P (�) →| P (�)

defined by1

P (')+*
def
= Rel

(
jpt, + � ' �*

)
for each* ∈ P (�) and each+ ∈ P (�).

1Illustration:

pt � � pt.

jpt

* ' +

Remark 4.6.2IUnwindingDefinition 4.6.1

In detail, we have* ∼P (') + iff:

• We have jpt ⊂ + � ' �* , i.e. iff:

• We have (+ � ' �*)★★ = true, i.e. iff we have∫ 0∈� ∫ 1∈�
+★
1 × '10 ×*0

★ = true,

i.e. iff:

• There exists some 0 ∈ � and some 1 ∈ � such that:

• We have*0
★ = true;

• We have '10 = true;
• We have+★

1
= true;

89

i.e. iff:

• There exists some 0 ∈ � and some 1 ∈ � such that:

• We have 0 ∈ * ;
• We have 0 ∼' 1;
• We have 1 ∈ + .

Proposition 4.6.3I Functoriality of Powersets II

The assignment ' ↦→ P (') defines a functor

P : Rel → Rel .

Proof 4.6.4IProofof Proposition 4.6.3

Omitted.

5 Spans

5.1 Foundations

Let � and � be sets.

Definition 5.1.1I Spans

A span from � to �1 is a functor � : Λ → Sets such that

� ([−1]) = �,

� ([1]) = �.

1Further Terminology: Also called a roof from � to � or a correspondence from � to �.

Remark 5.1.2IUnwindingDefinition 5.1.1

In detail, a span from � to � is a triple ((, 5 , 6) consisting of1,2

• TheUnderlying Set. A set (, called the underlying set of ((, 5 , 6);

• The Legs. A pair of functions 5 : (→ � and 6 : (→ �.

5.1 Foundations 90

1Picture:

(

� �.

5 6

2Wemay think of a span ((, 5 , 6) from � to � as a multivalued map from � to �, sending an

element 0 ∈ � to the set 6
(
5 −1 (0)

)
of elements of �.

Definition 5.1.3IMorphismsof Spans

A morphism of spans (', 51, 61) to ((, 52, 62)1 is a natural transformation

(', 51, 61) =⇒ ((, 52, 62).
1Further Terminology: Also called amorphismof roofs from (', 51 , 61) to ((, 52 , 62) or amorphism

of correspondences from (', 51 , 61) to ((, 52 , 62) .

Remark 5.1.4IUnwindingDefinition 5.1.3

In detail, amorphismof spans from (', 51, 61) to ((, 52, 62) is a function q : ' →
(making the diagram1

'

(

� �

� �.

q

51 61

52 62

commute.

1Alternative Picture:

'

� �.

(

51 61

52 62

q

5.1 Foundations 91

Definition 5.1.5I The Categoryof Spans From � to �

The category of spans from � to � is the categorySpan(�, �) defined by

Span(�, �) def
= Fun(Λ,Sets) ×

ev[−1] ,Sets,[�]
pt ×

[�] ,Sets,ev[1]
Fun(Λ,Sets),

as in the diagram

Span(�, �)

Fun(Λ,Sets) ×
Sets

pt pt ×
Sets

Fun(Λ,Sets)

Fun(Λ,Sets) pt Fun(Λ,Sets) .

Sets Sets

ev[−1] [�] [�] ev[1]

y

y

y

Remark 5.1.6IUnwindingDefinition 5.1.5

In detail, the category of spans from � to � is the categorySpan(�, �) where

• Objects. The objects ofSpan(�, �) are spans from � to �;

• Morphisms. Themorphism ofSpan(�, �) aremorphisms of spans;

• Identities. The unitmap

1
Span(�,�)
((,5 ,6) : pt → HomSpanC (�,�) (((, 5 , 6), ((, 5 , 6))

ofSpan(�, �) at ((, 5 , 6) is defined by1

id
Span(�,�)
((,5 ,6)

def
= id(;

• Composition. The compositionmap

◦Span(�,�)
',(,)

: HomSpanC (�,�) ((,)) × HomSpanC (�,�) (', () → HomSpanC (�,�) (',))

ofSpan(�, �) at ((', 51, 61), ((, 52, 62), (), 53, 63)) is defined by2

k ◦Span(�,�)
',(,)

q
def
= k ◦ q.

5.1 Foundations 92

1Picture:

(

(

� �

� �.

id(

5 6

5 6

2Picture:

'

(

)

� �

� �

� �.

q

k51 61

52 62

53 63

Definition 5.1.7I TheBicategoryof Spans

The bicategory of spans inC is the bicategorySpanwhere

• Objects. The objects ofSpan are sets;

• Hom-Categories. For each �, � ∈ Obj(Span), we have

HomSpan (�, �)
def
= Span(�, �);

• Identities. For each � ∈ Obj(Span), the unit functor

1
Span
�

: pt → Span(�, �)

ofSpan at � is the functor picking the span (�, id�, id�):

�

� �.

id� id�

5.1 Foundations 93

• Composition. The composition bifunctor

◦Span
�,�,�

: Span(�,�) × Span(�, �) → Span(�,�)

ofSpan at (�, �,�) is the bifunctor where

• Action onObjects. The composition of two spans

'

� �

51 61 and

(

� �

52 62

inC is the span (' ×� (, 51 ◦ pr1, 62 ◦ pr2), constructed as in the di-
agram

' ×� (

' (

� � �.

y
pr2pr151 ◦pr1 62 ◦pr2

51 62 51 62

• Action onMorphisms. The horizontal composition of 2-morphisms is

defined via functoriality of pullbacks: givenmorphisms of spans

'

� �

'′

q

5 6

5 ′ 6′

and

(

� �,

(′

k

ℎ 9

ℎ′ 9′

5.1 Foundations 94

their horizontal composition is themorphism of spans

' ×� (

� �,

'′ ×� (′

∃!

5 ◦pr1 9◦pr2

ℎ′ ◦pr′1 9′ ◦pr′2

constructed as in the diagram

' ×� (

' (

� � �;

'′ (′

'′ ×� (′

pr2pr1
5 ◦pr1 9◦pr2

y

5
6 ℎ

9

5 ′
6′ ℎ′ 9

pr′1 pr′2
5 ′ ◦pr′1 9′ ◦pr′2

∃!

y

• Associators and Unitors. The associator and unitors are defined using the

universal property of the pullback.

Definition 5.1.8I TheDouble Categoryof Spans

The double category of spans is the double categorySpandbl where

• Objects. The objects ofSpandbl are sets;

5.1 Foundations 95

• Vertical Morphisms. The vertical morphisms of Spandbl are functions

5 : �→ �;

• Horizontal Morphisms. The horizontal morphisms of Spandbl are spans
((, q, k) : �→| - ;

• 2-Morphisms. A 2-cell

� �

- .

(',q' ,k')

5 6

((,q(,k()

U

ofSpandbl is amorphism of spans from the span

'

�

� .

q'

k'

6

to the span

� ×- (

� (

- - . ;

y

5
5 q(

k(

• Horizontal Identities. The horizontal unit functor

1Spandbl
:
(
Spandbl

)
0
→

(
Spandbl

)
1

ofSpandbl is the functor where

5.1 Foundations 96

• Action onObjects. For each � ∈ Obj
((

Spandbl
)

0

)
, we have

1�
def
= (�, id�, id�),

as in the diagram

�

� �;

id� id�

• Action on Morphisms. For each vertical morphism 5 : � → � of

Spandbl, i.e. eachmapof sets 5 from � to �, the identity2-morphism

� �

� �

1�

5 5

1�

15

of 5 is themorphism of spans from

�

�

� �

id�

id�

5

to

� ×� �

� �

� � �

y

5
5 id�

id�

given by the isomorphism �
�−→ � ×� �;

5.1 Foundations 97

• Vertical Identities. For each � ∈ Obj
(
Spandbl

)
, we have

id
Spandbl

�

def
= id�;

• Identity2-Morphisms. For each horizontalmorphism ' : �→| � ofSpandbl,
the identity 2-morphism

� �

� �

(

id� id�

(

id(

of ' is themorphism of spans from

(

�

� �

q(

k(

id�

to

� ×� (

� (

� � �

y

id�
id� q(

k(

given by the isomorphism (
�−→ � ×� (;

• Horizontal Composition. The horizontal composition functor

�Spandbl
:
(
Spandbl

)
1
×(

Spandbl
)

0

(
Spandbl

)
1
→

(
Spandbl

)
1

ofSpandbl is the functor where

5.2 Comparison to Functions 98

• Action onObjects. For each composable pair

�
(',q' ,k')
−→| �

((,q(,k()
−→| �

of horizontalmorphisms ofSpandbl, we have

((, q(, k() � (', q' , k')
def
= (◦Span

�,�,�
',

where (◦Span
�,�,�

' is the composition of (', q' , k') and ((, q(, k()
defined as in Definition 5.1.7;

• Action onMorphisms. For each horizontally composable pair

� �

- .

(',q' ,k')

5 6

(),q) ,k))

U

� �

. /

((,q(,k()

6 ℎ

(*,q* ,k*)

V

of 2-morphisms ofSpandbl, […];

• Vertical Composition of1-Morphisms. For each composable pair �
�−−→�

�−−→�

of verticalmorphisms ofSpandbl, i.e. maps of sets, we have

6 ◦Spandbl
5

def
= 6 ◦ 5 ;

• Vertical Composition of2-Morphisms. For each vertically composable pair

� -

� .

(',q' ,k')

5 6

((,q(,k()

U

� .

� /

((,q(,k()

ℎ 9

(),q) ,k))

V

of 2-morphisms ofSpandbl, […];

• Associators andUnitors. The associator and unitors ofSpandbl are defined
using the universal property of the pullback.

5.2 Comparison to Functions

5.3 Comparison to Relations 99

Proposition 5.2.1I Comparisonof Spans to Functions

Wehave a pseudofunctor

] : Setsbidisc → Span

fromSetsbidisc toSpanwhere

• Action onObjects. For each � ∈ Obj(Setsbidisc), we have

](�) def
= �;

• Action onHom-Categories. For each �, � ∈ Obj(Setsbidisc), the action on
Hom-categories

]�,� : Sets(�, �)disc → Span(�, �)

of]at (�, �) is the functordefinedonobjectsbysendinga function 5 : �→
� to the span

�

� �

id� 5

from � to �.

Proof 5.2.2IProofof Proposition 5.2.1

Clear.

5.3 Comparison toRelations

Proposition 5.3.1I Comparisonof Spans toRelations I

Wehave a pseudofunctor

] : Span → Rel

fromSpan toRelwhere

• Action onObjects. For each � ∈ Obj(Span), we have

](�) def
= �;

5.3 Comparison to Relations 100

• Action onHom-Categories. For each �, � ∈ Obj(Span), the action onHom-

categories

]�,� : Span(�, �) → Rel(�, �)

of] at (�, �) is the functor where

• Action onObjects. Given a span

(

� �

5 6

from � to �, we define a relation

]�,� (() : �→| �

from � to � as follows:

• Viewing relationsas functions �×� → {true, false}, wedefine

]�,� (()01
def
=

{
true if there exists F ∈ (such that 0 = 5 (F) and 1 = 6(F),
false otherwise

for each (0, 1) ∈ � × �;

• Viewing relations as functions �→ P (�), we define[
]�,� (()

]
(0) def

= 6

(
5 −1 (0)

)
for each 0 ∈ �;

• Viewing relations as subsets of � × �, we define

]�,� (()
def
= {(5 (F), 6(F)) | F ∈ (}.

• Action onMorphisms. Given amorphism of spans

'

� �,

(

5' 6'

5(6(

q

5.3 Comparison to Relations 101

we have a corresponding inclusion of relations

]�,� (q) :]�,� (') ⊂]�,� ((),

sincewe have 0 ∼]�,� (') 1 iff there exists F ∈ ' such that 0 = 5' (F)
and 1 = 6' (F), in which casewe then have

0 = 5' (F)
= 5((q(F)),

1 = 6' (F)
= 6((q(F)),

so that 0 ∼]�,� (() 1, and thus]�,� (') ⊂]�,� (().

Proof 5.3.2IProofof Proposition 5.3.1

Omitted.

Proposition 5.3.3I Comparisonof Spans toRelations II

Wehave a lax functor (
],]2,]0

)
: Rel → Span

fromRel toSpanwhere

• Action onObjects. For each � ∈ Obj(Span), we have

](�) def
= �;

• Action onHom-Categories. For each �, � ∈ Obj(Span), the action onHom-

categories

]�,� : Rel(�, �) → Span(�, �)
of] at (�, �) is the functor where

• Action onObjects. Given a relation ' : �→| � from � to �, we define

a span

]�,� (') : �→| �
from � to � by

]�,� (')
def
=

(
', pr1 |' , pr2 |'

)
,

5.3 Comparison to Relations 102

where ' ⊂ � × � and pr1 |' and pr2 |' are the restriction of the
projections

pr1 : � × � → �,

pr2 : � × � → �

to ';

• Action onMorphisms. Given an inclusion q : ' ⊂ (of relations, we

have a correspondingmorphism of spans

]�,� (q) :]�,� (') →]�,� (()

as in the diagram

'

� �.

(

pr1
��
'

pr2
��
'

pr1
��
(

pr2
��
(

• The Lax Functoriality Constraints. The lax functoriality constraint

]2',(:](() ◦](') =⇒]((� ')

of] at (', () is given by themorphism of spans from

' ×� (

' (

� � �

y
pr2pr1pr1

��
'
◦pr1 pr2

��
(
◦pr2

pr1
��
'

pr2
��
'

pr1
��
(

pr2
��
(

to

(� '

� �

pr1
��
(�' pr2

��
(�'

5.3 Comparison to Relations 103

given by the natural inclusion ' ×� (↩→ (� ', since we have

' ×� (= {((0' , 1'), (1(, 2()) ∈ ' × (| 1' = 1(};

(� ' =

{
(0, 2) ∈ � × �

���� there exists some 1 ∈ � such

that (0, 1) ∈ ' and (1, 2) ∈ (

}
;

• The LaxUnity Constraints. The lax unity constraint1

]0
�

: id](�)︸︷︷︸
(�,id�,id�)

=⇒](j�)︸︷︷︸(
Δ�,pr1

���
Δ�
,pr2

���
Δ�

)
of] at � is given by the diagonalmorphism of �, as in the diagram

�

� �.

Δ�

id� id�

pr1
��
Δ�

pr2
��
Δ�

X�

1Which is in fact strong, as X� is an isomorphism.

Proof 5.3.4IProofof Proposition 5.3.1

Omitted.

Remark 5.3.5I InteractionWithMultirelations

The pseudofunctor of Proposition 5.3.1 and the lax functor of Proposition 5.3.3

fail to be equivalences of bicategories. This happens essentially because a span

((, 5 , 6) : � →| � from � to �may relate elements 0 ∈ � and 1 ∈ � by more

than one element, e.g. there could be A ≠ A′ ∈ (such that 0 = 5 (A) = 5 (A′) and
1 = 6(A) = 6(A′).

Thus, in a sense, spansmay be thought of as “relationswithmultiplicity”. And

indeed, if instead of considering relations from � to �, i.e. functions

' : � × � → {true, false}

from � × � to {true, false} � {0, 1}, we consider functions

' : � × � → N ∪ {∞}

104

from � × � toN ∪ {∞}, thenwe obtain the notion of amultirelation from � to

�, and these turn out to assemble together with sets into a bicategoryMRel that
is biequivalent toSpan; see [BG03, Propositions 2.5 and 2.6].

Remark 5.3.6I InteractionWithDouble Categories andAdjointness

There are double functors between the double categories Reldbl and Spandbl

analogous to the functors of Propositions 5.3.1 and 5.3.3, assemblingmoreover

into a strict-lax adjunction of double functors; see [Gra20, Section 4.5.3].

6 Hyperpointed Sets

6.1 Foundations

Definition 6.1.1IHyperpointed Sets

A hyperpointed set1 is equivalently:

• AnE0-monoid in (N• (Rel), pt);

• A pointed object in (Rel, pt);

• A pointed object in (Rel, pt).
1Further Terminology: Also called amultipointed set or anF1-hypermodule.

Remark 6.1.2IUnwindingDefinition 6.1.1, I

Viewing relations � →| � as functions � × � → {true, false} via Remark 1.1.3,

we see that hyperpointed setsmay also be described as follows:

A hyperpointed set is a pair (-, F0) consisting of
• TheUnderlying Set. A set - , called the underlying set of (-, F0);

• TheHyperbasepoint. Amorphism

� : pt →| -

in Rel frompt to - , i.e. a relation

� : pt × - →| {true, false}

frompt to - , called the hyperbasepoint of - .

6.1 Foundations 105

Remark 6.1.3IUnwindingDefinition 6.1.1, II

Viewing relations �→| � as functions �→ P (�) via Remark 1.1.3, we see that

hyperpointed setsmay also be described as follows:

A hyperpointed set is a pair (-, F0) consisting of

• TheUnderlying Set. A set - , called the underlying set of (-, F0);

• TheHyperbasepoint. Amorphism

[F0] : pt →| -

in Rel frompt to - , i.e. a relation

[F0] : pt → P (-)

frompt to - , determining a subset F0 of - , called the hyperbasepoint of
- .

Example 6.1.4I The EmptyHyperpointed Set

The empty hyperpointed set is the hyperpointed set (Ø,Ø) consisting of

• TheUnderlying Set. The empty set Ø;

• TheHyperbasepoint. The subset Ø of pt.

Example 6.1.5I The TrivialHyperpointed Set

The trivial hyperpointed set is the hyperpointed set (pt,★) consisting of

• TheUnderlying Set. The punctual set pt
def
= {★};

• TheHyperbasepoint. The subset {★} of pt.

Example 6.1.6IRepresentableHyperpointed Sets

The representable hyperpointed set associated to a pointed set (-, F0) is the
hyperpointed set (-, {F0}) consisting of

• TheUnderlying Set. The set - ;

• TheHyperbasepoint. The subset {F0} of - .

6.2 Hyperpointed Functions 106

6.2 Hyperpointed Functions

6.2.1 LaxHyperpointed Functions

Let (-, F0) and (., G0) be hyperpointed sets.

Definition 6.2.1I LaxHyperpointed Functions

A lax hyperpointed function from (-, F0) to (., G0)1 is a pair
(
5 , 5 0) consisting

of

• The Underlying Function. A function 5 : - → . , called the underlying

function of
(
5 , 5 0) ;

• TheHyperbasepoint Preservation Constraint. A natural transformation

5 0 : [G0] =⇒ 5∗ ◦ [F0] ,

pt

P (-) P (.),

[F0] [G0]

5∗

5 0

called the lax hyperbasepoint preservation constraint of
(
5 , 5 0) , i.e. an

inclusion of sets

G0 ⊂ 5 (F0).
1Further Terminology: Also called a laxmultipointed function, a laxmorphismof hyperpointed

sets, a laxmorphismofmultipointed sets, or a laxmorphismofF1-hypermodules.

6.2.2 OplaxHyperpointed Functions

Let (-, F0) and (., G0) be hyperpointed sets.

Definition 6.2.2IOplaxHyperpointed Functions

Aoplaxhyperpointed function from (-, F0) to (., G0)1 is a pair
(
5 , 5 0) consisting

of

• The Underlying Function. A function 5 : - → . , called the underlying

function of
(
5 , 5 0) ;

6.3 Hyperpointed Relations 107

• TheHyperbasepoint Preservation Constraint. A natural transformation

5 0 : [G0] =⇒ 5∗ ◦ [F0] ,

pt

P (-) P (.),

[F0] [G0]

5∗

5 0

called the oplax hyperbasepoint preservation constraint of
(
5 , 5 0) , i.e. an

inclusion of sets

5 (F0) ⊂ G0.

1Further Terminology: Also called a oplax multipointed function, a oplax morphism of hyper-

pointed sets, a oplaxmorphismofmultipointed sets, or a oplaxmorphismofF1-hypermodules.

6.2.3 StrongHyperpointed Functions

Let (-, F0) and (., G0) be hyperpointed sets.

Definition 6.2.3I StrongHyperpointed Functions

A strong hyperpointed function from (-, F0) to (., G0)1 is an op/lax hyper-

pointed function
(
5 , 5 0) whose hyperbasepoint preservation constraint is an iso-

morphism.

1Further Terminology: Also called simply a hyperpointed function, a strict hyperpointed function,

a strong/strictmultipointed function, a strong/strictmorphismofhyperpointedsets, a strong/strict

morphismofmultipointed sets, or a strong/strictmorphismofF1-hypermodules.

Remark 6.2.4IUnwindingDefinition 6.2.3

In detail, a strong hyperpointed function from (-, �-) to (., �.) is a function
5 : - → . such that we have an equality of sets

5 (F0) = G0.

6.3 HyperpointedRelations

6.3.1 LaxHyperpointedRelations

Let (-, �-) and (., �.) be hyperpointed sets.

6.3 Hyperpointed Relations 108

Definition 6.3.1I LaxHyperpointedRelations

A lax hyperpointed relation1 is a laxmorphism of pointed objects in (Rel, pt).
1Further Terminology: Also called a lax hypermorphismof hyperpointed sets, or a lax hypermor-

phismofF1-hypermodules.

Remark 6.3.2IUnwindingDefinition 6.3.1, I

Viewing relations � →| � as functions � × � → {true, false} via Remark 1.1.3,

we see that lax hyperpointed relationsmay be described as follows:

A laxhyperpointedrelation from (-, �-) to (., �.) is apair
(
5 , 5 0) consisting

of

• TheUnderlying Relation. A relation

5 : - × . → {true, false}

from - to. , called the underlying relation of
(
5 , 5 0) ;

• TheHyperbasepoint Preservation Constraint. A natural transformation

5 0 : �. =⇒ 5 � �- ,

pt

- .,

�- �.

5

5 0

called the laxhyperbasepointpreservationconstraintof
(
5 , 5 0) , with com-

ponents [
5 0] 0 : [�.]0 →

∫ F∈-
5 −F × [�-]F

in {true, false}, for 0 ∈ - .

Remark 6.3.3IUnwindingDefinition 6.3.1, II

Viewing relations �→| � as functions �→ P (�) via Remark 1.1.3, we see that

lax hyperpointed relationsmay also be described as follows:

A laxhyperpointedrelation from (-, F0) to (., G0) is a pair
(
5 , 5 0) consisting

of

6.3 Hyperpointed Relations 109

• TheUnderlying Relation. A relation

5 : - × . → {true, false}

from - to. , called the underlying relation of
(
5 , 5 0) ;

• TheHyperbasepoint Preservation Constraint. A natural transformation

5 0 : [G0] =⇒ 5 � [F0] ,

pt

- .,

[F0] [G0]

5

5 0

called the lax hyperbasepoint preservation constraint of
(
5 , 5 0) , i.e. an

inclusion of sets

G0 ⊂ 5 (F0),

i.e.:

G0 ⊂
⋃
F∈F0

5 (F).

6.3.2 OplaxHyperpointedRelations

Definition 6.3.4IOplaxHyperpointedRelations

An oplax hyperpointed relation1 is an oplax morphism of pointed objects in

(Rel, pt).
1Further Terminology: Also called an oplax hypermorphism of hyperpointed sets or an oplax

hypermorphismofF1-hypermodules.

Remark 6.3.5IUnwindingDefinition 6.3.4, I

Viewing relations � →| � as functions � × � → {true, false} via Remark 1.1.3,

we see that oplax hyperpointed relationsmay be described as follows:

An oplax hyperpointed relation from (-, �-) to (., �.) is a pair
(
5 , 5 0) con-

sisting of

• TheUnderlying Relation. A relation

5 : - × . → {true, false}

6.3 Hyperpointed Relations 110

from - to. , called the underlying relation of
(
5 , 5 0) ;

• TheHyperbasepoint Preservation Constraint. A natural transformation

5 0 : �. =⇒ 5 � �- ,

pt

- .,

�- �.

5

5 0

called the oplax hyperbasepoint preservation constraint of
(
5 , 5 0) , with

components [
5 0] 0 :

∫ F∈-
5 −F × [�-]F → [�.]0

in {true, false}, for 0 ∈ - .

Remark 6.3.6IUnwindingDefinition 6.3.4, II

Viewing relations �→| � as functions �→ P (�) via Remark 1.1.3, we see that

oplax hyperpointed relationsmay also be described as follows:

An oplax hyperpointed relation from (-, F0) to (., G0) is a pair
(
5 , 5 0) con-

sisting of

• TheUnderlying Relation. A relation

5 : - × . → {true, false}

from - to. , called the underlying relation of
(
5 , 5 0) ;

• TheHyperbasepoint Preservation Constraint. A natural transformation

5 0 : [G0] =⇒ 5 � [F0] ,

pt

- .,

[F0] [G0]

5

5 0

called the oplax hyperbasepoint preservation constraint of
(
5 , 5 0) , i.e. an

inclusion of sets

5 (F0) ⊂ G0,

6.3 Hyperpointed Relations 111

i.e.: ⋃
F∈F0

5 (F) ⊂ G0.

6.3.3 StrongHyperpointedRelations

Let (-, F0) and (., G0) be hyperpointed sets.

Definition 6.3.7I StrongHyperpointedRelations

A stronghyperpointed relation from (-, F0) to (., G0)1 is equivalently:

• Amorphism ofE0-monoids in (N• (Rel), pt);

• Amorphism of pointed objects in (Rel, pt);

• A strongmorphism of pointed objects in (Rel, pt);

• A strictmorphism of pointed objects in (Rel, pt).
1Further Terminology: Also called simply a hyperpointed relation, a strict hyperpointed rela-

tion, a strong/strictmultipointed relation, a strong/strict hypermorphismof hyperpointed sets,

a strong/strict hypermorphism of multipointed sets, or a strong/strict hypermorphism of F1-
hypermodules.

Remark 6.3.8IUnwindingDefinition 6.3.7, I

Viewing relations � →| � as functions � × � → {true, false} via Remark 1.1.3,

we see that strong hyperpointed relationsmay also be described as follows:

In detail, a strong hyperpointed relation from (-, �-) to (., �.) is an op/lax
hyperpointed relation

(
5 , 5 0) whose hyperbasepoint preservation constraint is

an isomorphism.

Remark 6.3.9IUnwindingDefinition 6.3.7, II

Viewing relations �→| � as functions �→ P (-) via Remark 1.1.3, we see that

strong hyperpointed relationsmay also be described as follows:

A stronghyperpointed relation from (-, �-) to (., �.) is a relation 5 : - →|
. such that we have an equality of relations∫ F∈-

5 −F × [�-]F = �. .

6.4 Categories of Hyperpointed Sets 112

Remark 6.3.10IUnwindingDefinition 6.3.7, III

Viewing relations � →| � as functions � × � → {true, false} via Remark 1.1.3,

we see that strong hyperpointed relationsmay also be described as follows:

A strong hyperpointed relation from (-, F0) to (., G0) is a relation 5 : - →|
. such that we have an equality of sets

5 (F0) = G0,

i.e.: ⋃
F∈F0

5 (F) = G0.

6.4 Categories ofHyperpointed Sets

Definition 6.4.1I Categories ofHyperpointed Sets

Hyperpointed sets and hyperpointed functions/relations assemble into the fol-

lowing (2-)categories:

• The categorySetshyp,lax
∗ of hyperpointed sets and lax hyperpointedmor-

phismsbetween them;

• The categorySetshyp,oplax
∗ of hyperpointed sets and oplax hyperpointed

morphismsbetween them;

• The categorySetshyp
∗ of hyperpointed sets and strong hyperpointedmor-

phismsbetween them;

• The categoryRel
hyp,lax
∗ of hyperpointed sets and lax hyperpointed rela-

tions between them;

• The categoryRel
hyp,oplax
∗ of hyperpointed sets and oplax hyperpointed

relations between them;

• The categoryRel
hyp
∗ of hyperpointed sets and stronghyperpointed rela-

tions between them;

• The 2-categoryRelhyp,lax
∗ of hyperpointed sets and lax hyperpointed re-

lations between them;

• The 2-categoryRelhyp,oplax
∗ ofhyperpointed sets andoplaxhyperpointed

relations between them;

6.5 FreeHyperpointed Sets 113

• The 2-category Relhyp
∗ of hyperpointed sets and strong hyperpointed

relations between them.

Proposition 6.4.2IRelation toPointed Sets

The assignment (-, F0) ↦→ (-, {F0}) sending a pointed set to its representable
hyperpointed set defines a fully faithful functor

Sets∗ ↩→ Setshyp
∗ .

Proof 6.4.3IProofof Proposition 6.4.2

Omitted.

6.5 FreeHyperpointed Sets

Let - be a set.

Definition 6.5.1I FreeHyperpointed Sets

The free hyperpointed set on - is the hyperpointed set -+ consisting of

• TheUnderlying Set. The set -+ defined by

-+ def
= -

∐
pt;

• The Basepoint. The element★ of -+.

Proposition 6.5.2IProperties of FreeHyperpointed Sets

Let - be a set.

1. Functoriality I.The assignment - ↦→ -+ defines functors

(−)+ : Sets → Setshyp,lax
∗ ,

(−)+ : Sets → Setshyp,oplax
∗ ,

(−)+ : Sets → Setshyp
∗ ,

where

6.5 FreeHyperpointed Sets 114

• Action onObjects. For each - ∈ Obj(Sets), we have[
(−)+

]
(-) def

= -+,

where -+ is the hyperpointed set of Definition 6.5.1;

• Action on Morphisms. For each morphism 5 : - → . of Sets, the
image

5+ : -+ → .+

of 5 by (−)+ is the hyperpointed function defined by

5+ (F) def
=

{
5 (F) if F ∈ - ,
★ if F = ★.

2. Functoriality II.The assignment - ↦→ -+ defines functors

(−)+ : Rel → Rel
hyp,lax
∗ ,

(−)+ : Rel → Rel
hyp,oplax
∗ ,

(−)+ : Rel → Rel
hyp
∗ ,

where

• Action onObjects. For each - ∈ Obj(Rel), we have[
(−)+

]
(-) def

= -+,

where -+ is the hyperpointed set of Definition 6.5.1;

• Action onMorphisms. For eachmorphism 5 : - →| . of Rel, the image

5+ : -+ →| .+

of 5 by (−)+ is the hyperpointed relation defined by

5+ (F) def
=

{
5 (F) if F ∈ - ,
{★} if F = ★.

3. Adjointness I.Wehave an adjunction1

(
(−)+ a忘

)
:

(−)+

忘

aSets Setshyp,lax
∗ ,

6.5 FreeHyperpointed Sets 115

witnessed by a bijection of sets

Setshyp,lax
∗ ((-+, {★}), (., G0)) � Sets(-, .),

natural in - ∈ Obj(Sets) and (., G0) ∈ Obj
(
Setshyp,lax

∗

)
.

4. Adjointness II.Wehave adjunctions

(
(−)+ a忘

)
:

(−)+

忘

a

Rel Rel
hyp,lax
∗ ,

(
(−)+ a忘

)
:

(−)+

忘

a
Rel Rel

hyp,oplax
∗ ,

(
(−)+ a忘

)
:

(−)+

忘

a

Rel Rel
hyp
∗ ,

witnessed by bijections of sets

Rel
hyp,lax
∗ ((-+, {★}), (., G0)) � Rel(-, .),

Rel
hyp,lax
∗ ((-+, {★}), (., G0)) � Rel(-, .),

Rel
hyp,lax
∗ ((-+, {★}), (., G0)) � Rel(-, .),

natural in - ∈ Obj(Rel) and (., G0) ∈ Obj
(
Rel

hyp,lax
∗

)
, resp. (., G0) ∈

Obj
(
Rel

hyp,oplax
∗

)
and (., G0) ∈ Obj

(
Rel

hyp
∗

)
.

5. Symmetric StrongMonoidalityWith Respect toWedge Sums I.The free hyper-

pointed set functor of Item 1 has a symmetric strongmonoidal structure(
(−)+, (−)+,

∐
, (−)+,

∐
1

)
: (Sets,

∐
,Ø) →

(
Setshyp,lax

∗ ,∨, pt
)
,

being equippedwith isomorphisms of hyperpointed sets

(−)+,
∐

-,.
: -+ ∨ .+ �−→ (- ∐

.)+,

(−)+,
∐
1 : pt �−→ Ø+

,

natural in -, . ∈ Obj(Sets).

6.5 FreeHyperpointed Sets 116

6. Symmetric StrongMonoidalityWith Respect toWedge Sums II. The free hyper-

pointed set functors of Item 2 have symmetric strongmonoidal structures(
(−)+, (−)+,

∐
, (−)+,

∐
1

)
: (Rel,∐,Ø) →

(
Rel

hyp,lax
∗ ,∨, pt

)
,(

(−)+, (−)+,
∐
, (−)+,

∐
1

)
: (Rel,∐,Ø) →

(
Rel

hyp,oplax
∗ ,∨, pt

)
,(

(−)+, (−)+,
∐
, (−)+,

∐
1

)
: (Rel,∐,Ø) →

(
Rel

hyp,lax
∗ ,∨, pt

)
,

being equippedwith isomorphisms of hyperpointed sets

(−)+,
∐

-,.
: -+ ∨ .+ �→| (- ∐

.)+,

(−)+,
∐
1 : pt

�

→| Ø+
,

natural in -, . ∈ Obj(Rel).

7. Symmetric StrongMonoidalityWith Respect to Smash Products I.The free hy-

perpointed set functor of Item1has a symmetric strongmonoidal structure(
(−)+, (−)+,× , (−)+,×1

)
: (Sets,×, pt) →

(
Setshyp,lax

∗ ,∧, (0
)
,

being equippedwith isomorphisms of hyperpointed sets

(−)+,×
-,.

: -+ ∧ .+ �−→ (- × .)+,

(−)+,×1 : (0 �−→ pt+,

natural in -, . ∈ Obj(Sets).

8. Symmetric StrongMonoidalityWith Respect to Smash Products II. The free hy-

perpointed set functors of Item 2 have symmetric strongmonoidal struc-

tures(
(−)+, (−)+,× , (−)+,×1

)
: (Rel,×, pt) →

(
Rel

hyp,lax
∗ ,∧, (0

)
,(

(−)+, (−)+,× , (−)+,×1
)
: (Rel,×, pt) →

(
Rel

hyp,oplax
∗ ,∧, (0

)
,(

(−)+, (−)+,× , (−)+,×1
)
: (Rel,×, pt) →

(
Rel

hyp,lax
∗ ,∧, (0

)
,

being equippedwith isomorphisms of hyperpointed sets

(−)+,×
-,.

: -+ ∧ .+ �→| (- × .)+,

(−)+,×1 : (0
�

→| pt+,

117

natural in -, . ∈ Obj(Rel).

1
�

Warning: This does not work if we replaceSetshyp,lax
∗ bySetshyp,oplax

∗ orSetshyp
∗ .

Proof 6.5.3IProofof Proposition 6.5.2

Item 1: Functoriality I

Clear.

Item 2: Functoriality II

Clear.

Item 3: Adjointness I

Clear.

Item 4: Adjointness II

Clear.

Item 6: Symmetric StrongMonoidalityWith Respect toWedge Sums I

Omitted.

Item 6: Symmetric StrongMonoidalityWith Respect toWedge Sums II

Omitted.

Item 7: Symmetric StrongMonoidalityWith Respect to Smash Products I

Omitted.

Item 8: Symmetric StrongMonoidalityWith Respect to Smash Products II

Omitted.

Appendices

A Other Chapters

Logic andModel Theory

1. Logic

2. Model Theory

Type Theory

3. Type Theory

4. Homotopy Type Theory

Set Theory

5. Sets

6. ConstructionsWith Sets

7. Indexed and Fibred Sets

8. Relations

9. Posets

118

Category Theory

10. Categories

11. ConstructionsWith Categories

12. Limits and Colimits

13. Ends and Coends

14. Kan Extensions

15. Fibred Categories

16. Weighted Category Theory

CategoricalHochschild Co/Homology

17. Abelian Categorical Hochschild

Co/Homology

18. Categorical Hochschild Co/Homol-

ogy

Monoidal Categories

19. Monoidal Categories

20. Monoidal Fibrations

21. Modules OverMonoidal Categories

22. Monoidal Limits and Colimits

23. Monoids inMonoidal Categories

24. Modules inMonoidal Categories

25. SkewMonoidal Categories

26. Promonoidal Categories

27. 2-Groups

28. Duoidal Categories

29. Semiring Categories

Categorical Algebra

30. Monads

31. Algebraic Theories

32. ColouredOperads

33. Enriched ColouredOperads

EnrichedCategory Theory

34. Enriched Categories

35. Enriched Ends and Kan Extensions

36. Fibred Enriched Categories

37. Weighted Enriched Category The-

ory

Internal Category Theory

38. Internal Categories

39. Internal Fibrations

40. Locally Internal Categories

41. Non-Cartesian Internal Categories

42. Enriched-Internal Categories

Homological Algebra

43. Abelian Categories

44. Triangulated Categories

45. Derived Categories

Categorical Logic

46. Categorical Logic

47. Elementary Topos Theory

48. Non-Cartesian Topos Theory

Sites, Sheaves, and Stacks

49. Sites

50. Modules on Sites

51. Topos Theory

52. Cohomology in a Topos

53. Stacks

Complements on Sheaves

54. Sheaves ofMonoids

Bicategories

55. Bicategories

56. Biadjunctions and Pseudomonads

57. Bilimits and Bicolimits

58. Biends and Bicoends

59. Fibred Bicategories

60. Monoidal Bicategories

61. Pseudomonoids inMonoidal Bicat-

egories

Higher Category Theory

62. Tricategories

63. GrayMonoids and Gray Categories

119

64. Double Categories

65. Formal Category Theory

66. Enriched Bicategories

67. Elementary 2-Topos Theory

Simplicial Stuff

68. The Simplex Category

69. Simplicial Objects

70. Cosimplicial Objects

71. Bisimplicial Objects

72. Simplicial Homotopy Theory

73. Cosimplicial Homotopy Theory

Cyclic Stuff

74. The Cycle Category

75. Cyclic Objects

Cubical Stuff

76. The Cube Category

77. Cubical Objects

78. Cubical Homotopy Theory

Globular Stuff

79. The Globe Category

80. Globular Objects

Cellular Stuff

81. The Cell Category

82. Cellular Objects

Homotopical Algebra

83. Model Categories

84. Examples ofModel Categories

85. Homotopy Limits and Colimits

86. Homotopy Ends and Coends

87. Derivators

Topological and Simplicial Categories

88. Topologically Enriched Categories

89. Simplicial Categories

90. Topological Categories

Quasicategories

91. Quasicategories

92. Constructions With Quasicate-

gories

93. Fibrations of Quasicategories

94. Limits and Colimits in Quasicate-

gories

95. Ends and Coends in Quasicate-

gories

96. Weighted∞-Category Theory

97. ∞-Topos Theory

Cubical Quasicategories

98. Cubical Quasicategories

Complete Segal Spaces

99. Complete Segal Spaces

∞-Cosmoi

100. ∞-Cosmoi

Enriched and Internal∞-Category The-

ory

101. Internal∞-Categories

102. Enriched∞-Categories

(∞, 2)-Categories

103. (∞, 2)-Categories
104. 2-Quasicategories

(∞, <)-Categories

105. Complicial Sets

106. Comical Sets

Double∞-Categories

107. Double∞-Categories

HigherAlgebra

108. Differential Graded Categories

109. Stable∞-Categories

120

110. ∞-Operads

111. Monoidal∞-Categories

112. Monoids inSymmetricMonoidal∞-

Categories

113. Modules inSymmetricMonoidal∞-

Categories

114. Dendroidal Sets

DerivedAlgebraic Geometry

115. Derived Algebraic Geometry

116. Spectral Algebraic Geometry

CondensedMathematics

117. CondensedMathematics

Monoids

118. Monoids

119. ConstructionsWithMonoids

120. Tensor Products ofMonoids

121. Indexed and FibredMonoids

122. Indexed and Fibred Commutative

Monoids

123. MonoidsWith Zero

Groups

124. Groups

125. ConstructionsWith Groups

Algebra

126. Rings

127. Fields

128. Linear Algebra

129. Modules

130. Algebras

Near-Semirings andNear-Rings

131. Near-Semirings

132. Near-Rings

Semirings

133. Semirings

134. Commutative Semirings

135. Semifields

136. Semimodules

Hyper-Algebra

137. Hypermonoids

138. Hypersemirings andHyperrings

139. Quantales

CommutativeAlgebra

140. Commutative Rings

MoreAlgebra

141. Plethories

142. Graded Algebras

143. Differential Graded Algebras

144. Representation Theory

145. Coalgebra

146. Topological Algebra

Real Analysis,Measure Theory, andProb-

ability

147. Real Analysis

148. Measure Theory

149. Probability Theory

150. Stochastic Analysis

ComplexAnalysis

151. Complex Analysis

152. Several Complex Variables

Functional Analysis

153. Topological Vector Spaces

154. Hilbert Spaces

155. Banach Spaces

156. Banach Algebras

157. Distributions

Harmonic Analysis

158. Harmonic Analysis onR

121

Differential Equations

159. Ordinary Differential Equations

160. Partial Differential Equations

>-Adic Analysis

161. >-Adic Numbers

162. >-Adic Analysis

163. >-Adic Complex Analysis

164. >-Adic Harmonic Analysis

165. >-Adic Functional Analysis

166. >-Adic Ordinary Differential Equa-

tions

167. >-Adic Partial Differential Equa-

tions

Number Theory

168. Elementary Number Theory

169. Analytic Number Theory

170. Algebraic Number Theory

171. Class Field Theory

172. Elliptic Curves

173. Modular Forms

174. Automorphic Forms

175. Arakelov Geometry

176. Geometrisation of the Local Lang-

lands Correspondence

177. Arithmetic Differential Geometry

Topology

178. Topological Spaces

179. Constructions With Topological

Spaces

180. Conditions on Topological Spaces

181. Sheaves on Topological Spaces

182. Topological Stacks

183. Locales

184. Metric Spaces

Differential Geometry

184. Topological and SmoothManifolds

185. Fibre Bundles, Vector Bundles, and

Principal Bundles

186. Differential Forms, de RhamCoho-

mology, and Integration

187. Riemannian Geometry

188. Complex Geometry

189. Spin Geometry

190. Symplectic Geometry

191. Contact Geometry

192. Poisson Geometry

193. Orbifolds

194. Smooth Stacks

195. Diffeological Spaces

LieGroups and LieAlgebras

196. Lie Groups

197. Lie Algebras

198. Kac–Moody Groups

199. Kac–Moody Algebras

Homotopy Theory

200. Algebraic Topology

201. Spectral Sequences

202. Topological -Theory

203. Operator -Theory

204. Localisation and Completion of

Spaces

205. Rational Homotopy Theory

206. >-Adic Homotopy Theory

207. Stable Homotopy Theory

208. Chromatic Homotopy Theory

209. TopologicalModular Forms

210. Goodwillie Calculus

211. Equivariant Homotopy Theory

Schemes

212. Schemes

213. Morphisms of Schemes

214. Projective Geometry

215. Formal Schemes

122

Morphisms of Schemes

216. Finiteness Conditions on Mor-

phisms of Schemes

217. ÉtaleMorphisms

Topics in SchemeTheory

218. Varieties

219. Algebraic Vector Bundles

220. Divisors

Fundamental Groups of Schemes

221. The Étale Topology

222. The Étale Fundamental Group

223. Tannakian Fundamental Groups

224. Nori’s Fundamental Group Scheme

225. Étale Homotopy of Schemes

Cohomology of Schemes

226. Local Cohomology

227. Dualising Complexes

228. Grothendieck Duality

GroupSchemes

229. Flat Topologies on Schemes

230. Group Schemes

231. Reductive Group Schemes

232. Abelian Varieties

233. Cartier Duality

234. Formal Groups

Deformation Theory

235. Deformation Theory

236. The Cotangent Complex

Étale Cohomology

237. Étale Cohomology

238. �-Adic Cohomology

239. Pro-Étale Cohomology

Crystalline Cohomology

240. Hochschild Cohomology

241. De RhamCohomology

242. Derived de RhamCohomology

243. Infinitesimal Cohomology

244. Crystalline Cohomology

245. Syntomic Cohomology

246. The de Rham–Witt Complex

247. >-Divisible Groups

248. Monsky–Washnitzer Cohomology

249. Rigid Cohomology

250. Prismatic Cohomology

Algebraic -Theory

251. Topological Cyclic Homology

252. Topological Hochschild Homology

253. Topological André–QuillenHomo-

logy

254. Algebraic -Theory

255. Algebraic -Theory of Schemes

Intersection Theory

256. ChowHomology

257. Intersection Theory

MonodromyGroups inAlgebraic Geome-

try

258. MonodromyGroups

Algebraic Spaces

259. Algebraic Spaces

260. Morphisms of Algebraic Spaces

261. Formal Algebraic Spaces

Deligne–Mumford Stacks

262. Deligne–Mumford Stacks

Algebraic Stacks

263. Algebraic Stacks

264. Morphisms of Algebraic Stacks

Moduli Theory

References 123

265. Moduli Stacks

Motives

266. Tannakian Categories

267. Vanishing Cycles

268. Motives

269. Motivic Cohomology

270. Motivic Homotopy Theory

LogarithmicAlgebraic Geometry

271. Log Schemes

Analytic Geometry

272. Real Algebraic Geometry

273. Complex-Analytic Spaces

274. Rigid Spaces

275. Berkovich Spaces

276. Adic Spaces

277. Perfectoid Spaces

>-AdicHodge Theory

278. Fontaine’s Period Rings

279. The >-Adic Simpson Correspon-

dence

Algebraic GeometryMiscellanea

280. Tropical Geometry

281. F1-Geometry

Physics

282. ClassicalMechanics

283. Electromagnetism

284. Special Relativity

285. StatisticalMechanics

286. General Relativity

287. QuantumMechanics

288. Quantum Field Theory

289. Supersymmetry

290. String Theory

291. The AdS/CFT Correspondence

Miscellany

292. To Be Refactored

293. Miscellanea

294. Questions

References

[MSE 2096272] AkivaWeinberger. Is composition of two transitive relations transitive? If

not, can you giveme a counterexample?Mathematics Stack Exchange.

url: https://math.stackexchange.com/q/2096272 (cit. on
p. 53).

[BG03] Roberto Bruni and Fabio Gadducci. “SomeAlgebraic Laws for Spans

(And Their Connections With Multirelations)”. In: Electronic Notes

in Theoretical Computer Science 44.3 (2003). RelMiS 2001, Relational

Methods in Software (a Satellite Event of ETAPS 2001), pp. 175–193.

issn: 1571-0661. doi: https : / / doi . org / 10 . 1016 / S1571 -
0661(04)80937-X. url: https://www.sciencedirect.com/
science/article/pii/S157106610480937X (cit. on p. 104).

https://math.stackexchange.com/users/166353/akiva-weinberger
https://math.stackexchange.com/q/2096272
https://doi.org/https://doi.org/10.1016/S1571-0661(04)80937-X
https://doi.org/https://doi.org/10.1016/S1571-0661(04)80937-X
https://www.sciencedirect.com/science/article/pii/S157106610480937X
https://www.sciencedirect.com/science/article/pii/S157106610480937X

References 124

[Gra20] Marco Grandis.HigherDimensional Categories. Fromdouble tomulti-

ple categories.World Scientific Publishing Co. Pte. Ltd., Hackensack,

NJ, 2020, pp. xi+522. isbn: 978-981-120-510-1 (cit. on p. 104).

[Pro23a] Proof Wiki Contributors. Condition for Mapping fromQuotient Set to

be Injection—Proof Wiki. 2023. url: https://proofwiki.org/
wiki/Condition_for_Mapping_from_Quotient_Set_to_be_
Injection (cit. on p. 61).

[Pro23b] Proof Wiki Contributors. Condition for Mapping fromQuotient Set to

be Surjection—ProofWiki. 2023. url: https://proofwiki.org/
wiki/Condition_for_Mapping_from_Quotient_Set_to_be_
Surjection (cit. on p. 61).

[Pro23c] ProofWiki Contributors. Condition forMapping fromQuotient Set to be

Well-Defined—ProofWiki. 2023. url: https://proofwiki.org/
wiki/Condition_for_Mapping_from_Quotient_Set_to_be_
Well-Defined (cit. on p. 61).

[Pro23d] ProofWiki Contributors.Mapping fromQuotient Set whenDefined is

Unique—ProofWiki. 2023. url: https://proofwiki.org/wiki/
Mapping_from_Quotient_Set_when_Defined_is_Unique
(cit. on p. 61).

[Wik22] Wikipedia Contributors.Multivalued function—Wikipedia, The Free

Encyclopedia. 2022. url: https://en.wikipedia.org/wiki/
Multivalued_function (cit. on p. 9).

https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Injection
https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Injection
https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Injection
https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Surjection
https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Surjection
https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Surjection
https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Well-Defined
https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Well-Defined
https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Well-Defined
https://proofwiki.org/wiki/Mapping_from_Quotient_Set_when_Defined_is_Unique
https://proofwiki.org/wiki/Mapping_from_Quotient_Set_when_Defined_is_Unique
https://en.wikipedia.org/wiki/Multivalued_function
https://en.wikipedia.org/wiki/Multivalued_function

	Relations
	Foundations
	The Category of Relations
	The Closed Symmetric Monoidal Category of Relations
	The 2-Category of Relations
	The Double Category of Relations
	Properties of the Category of Relations

	Operations With Relations
	Graphs of Functions
	Representable Relations
	The Domain and Range of a Relation
	Binary Unions of Relations
	Unions of Families of Relations
	Binary Intersections of Relations
	Intersections of Families of Relations
	Binary Products of Relations
	Products of Families of Relations
	The Inverse of a Relation
	Composition of Relations
	The Collage of a Relation

	Equivalence Relations
	Reflexive Relations
	Symmetric Relations
	Transitive Relations
	Equivalence Relations
	Quotients by Equivalence Relations

	Functoriality of Powersets
	Direct Images
	Strong Inverse Images
	Weak Inverse Images
	Direct Images With Compact Support
	Functoriality of Powersets
	Functoriality of Powersets: Relations on Powersets

	Spans
	Foundations
	Comparison to Functions
	Comparison to Relations

	Hyperpointed Sets
	Foundations
	Hyperpointed Functions
	Hyperpointed Relations
	Categories of Hyperpointed Sets
	Free Hyperpointed Sets

	Appendix Other Chapters

