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INTRODUCTION

This chapter contains some material about relations and constructions
with them. Notably, it contains:

- A basicdiscussion and definition of relations (Section 1.1);

- How relations may be viewed as decategorification of profunctors
(Remarks1.1.5and 1.1.6)

- A discussion of the various kind of categories (a category, a mon-
oidal category, a 2-category, a double category) that relations form
(Sections1.2t01.5);

- The various categorical properties of the 2-category of relations, in-
cluding self-duality, identifications of adjunctions in Rel with func-
tions, of monads in Rel with preorders, of comonads in Rel with sub-
sets, the partial co/completeness of Rel, and its closedness, including
how right Kan extensions and right Kan lifts exist in Rel (Section 1.6);

- Adiscussion of the various kinds of operations involving relations,
such as graphs, domains, ranges, unions, intersections, products,
inverse relations, composition of relations, and collages (Section 2);

- Adiscussion of equivalence relations (Section 3) and quotient sets
(Section 3.5);

- Alengthy discussion of the adjoint pairs

R.4R_;: P(A) = P(B),
R 4R: P(B) = P(A)

of functors (morphisms of posets) between PP (A) and P (B) induced
by arelation R: A - B, along with a discussion of the properties of
R.,R_;,R7!,and R, (Section 4).

These two pairs of adjoint functors are the counterpart for relations
of the adjoint triple f, 4 f~! 4 f induced by a functionf: A — B
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studied in Constructions With Sets, Section 3, and indeed we have
R_; = R7liff Ristotal and functional (Item 7 of Proposition 4.2.3).
Thus when R comes from a function this pair of adjunctions reduces
to the triple adjunction . 4 f~! + f, from before.

The pairs R, 4 R_; and R™' 4 R, will later make an appearance
in the context of continuous, open, and closed relations between
topological spaces (Topological Spaces, Section 5).

- Adiscussion of spans (Section 5) and their relation to functions (Propo-
sition5.2.1) and relations (Propositions 5.3.1and 5.3.3and Remark5.3.5);

- A discussion of “hyperpointed sets” (Section 6). | don’t know why |

wrote this...
NOTES TO MYSELF
1. DefineAandV.
2. Write about cospans.
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1 Relations

1.1 Foundations

Let Aand B be sets.

DEFINITION 1.1.1 » RELATIONS

ArelationR: A  Bfrom AtoB"?isasubset Rof A X B.2

"Further Terminology: Also called a multivalued function from A to B, a relation over A and B,
relation on A and B, a binary relation over A and B, or a binary relation on Aand B.
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2Fyrther Terminology: When A = B,we alsocallR ¢ A X Aarelationon A.
3Fyrther Notation: Given elementsa € Aandb € B, we writea ~g btomean (a,b) € R.

DEFINITION 1.1.2 » THE PO/SET OF RELATIONS OVER TWO SETS

Let Aand B be sets.

1. The set of relations from A to B is the set Rel(A, B) defined by

Rel(A, B) = {Relations from A to B}.

def

2. The poset of relations from A to B is the poset Rel(A, B) = (Rel(A, B),
C) consisting of

- The Underlying Set. The set Rel(A, B) of ltem1;
- The Partial Order. The partial order

C: Rel(A, B) X Rel(A, B) — {true, false}

on Rel(A, B) given by inclusion of relations.

REMARK 1.1.3 > EQUIVALENT DEFINITIONS OF RELATIONS

Arelation from A to B is equivalently:’
1. Asubsetof A X B.
2. Afunction from A X B to {true, false}.
3. Afunction from Ato P(B).
4. Afunction from Bto P(A).
5. A cocontinuous morphism of posets from (P(A), C) to (P(B), ©).

Thatis: we have bijections of sets

def

Rel(A, B) = P(A X B),
= Sets(A X B, {true, false}),
= Sets(A, P(B)),
= Sets(B, P(A)),
= Hom®<" (P (A), P(B)),

Pos
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naturalin A, B € Obj(Sets).

Intuition: In particular, we may think of arelation R: A — P(B) from Ato B as a multivalued
function from A to B (including the possibility of a given a € A having novalue atall).

PROOF1.1.4 » PROOF OF REMARK 1.1.3

We claim that Items 1 to 5 are indeed equivalent:

- The equivalence between Items 1 and 2 is a special case of Sets, 22 of 22,

- The equivalence between Items 2 and 3 is an instance of currying, following
from the bijections

Sets(A X B, {true, false}) = Sets(A, Sets(B, {true, false}))
= Sets(A, P(B)). (sets, 220f22)

- The equivalence between Items 2 and 4 is also an instance of currying,
following from the bijections

Sets(A X B, {true, false}) = Sets(B, Sets(B, {true, false}))
=~ Sets(B, P(A)). (ets, 220 22)

- The equivalence between Items 2 and 5 follows from the universal property
of the powerset P(X) of a set X as the free cocompletion of X via the
characteristicembedding

1x: X > P(X)
of X into P(X) (Sets, 220f??).

This finishes the proof. =

"In particular, given arelationf: A — P (B) from Ato B, we may extend the domain of f from A
to all of P (A) by taking its left Kan extension along yx. This also coincides with the direct image
function f,.: P(A) — P(B) of Constructions With Sets, Definition 3.3.1.

REMARK 1.1.5 » RELATIONS AS DECATEGORIFICATIONS OF PROFUNCTORS |

The notion of a relation is a decategorification of that of a profunctor: while a
profunctor from a category C to a category D is a functor

p: D x C — Sets,
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arelation onsets Aand B is a function
R: AX B — {true, false},

where we notice that:

- The opposite X°P of a set X is itself, as (—)°P: Cats — Cats restricts to
the identity endofunctor on Sets;

- While
- Acategory is enriched over the category

Sets & Catsy

of sets, with profunctors taking values onit;

- Asetisenriched over the set
def
{true, false} = Cats_;

of classical truth values, with relations taking values on it;

REMARK 1.1.6 > RELATIONS AS DECATEGORIFICATIONS OF PROFUNCTORS Il

Extending Remark1.1.5, the equivalent definitions of relations in Remark1.1.3 are
also related to the corresponding ones for profunctors (Categories, Remark 3.1.2),
which state thata profunctorp: C b D is equivalently:

1. Afunctorp: D°P X C — Sets;

2. Afunctorp: C — PSh(D);

3. Afunctorp: D°P — Fun(C, Sets);

4. Acolimit-preserving functorp: PSh(C) — PSh(D).
Indeed:

- The equivalence between Items 1 and 2 (and also that between Items 1
and 3, which is proved analogously) is an instance of currying, both for
profunctors as well as for relations, using the isomorphisms

Sets(A X B, {true, false}) = Sets(A, Sets(B, {true, false}))
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= Sets(A, P(B)),
Fun(D° x D, Sets) = Fun(C, Fun(D°P, Sets))
= Fun(C, PSh(D)).

- The equivalence between Items 1 and 3 follows from the universal proper-
ties of:

- The powerset P(X) of aset X as the free cocompletion of X via the
characteristicembedding

X(-) X —> 'P(X)

of X into P(X) (Sets, 22 0f 22);

- The category PSh(C) of presheaves on a category C as the free co-
completion of C via the Yoneda embedding

&: C — PSh(C)

of C into PSh(C) (Categories, 2? of Proposition 7.3.2).

EXAMPLE1.1.7 » THE TRIVIAL RELATION

The trivial relation on A and B is the relation ~;, defined by'-*3

def

~riv = A X A.

"This is the unique relation R on A and B such that we have a ~g bforalla € Aandallb € B.
2As a function from A X Ato {true, false}, the relation ~y is the constant function

Atrue: A X B — {true, false}

from A X Bto {true, false} taking value true.
3As a function from A to P (B), the relation ~y is the function

Atrye: A— P(B)

defined by o
Atrye(a) = B

foreacha € A.
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EXAMPLE 1.1.8 » THE COTRIVIAL RELATION

The cotrivial relation on A and B is the relation ~qiy defined by'-%3

def
~cotriv. = @

1This is the unique relation R on A and B such thatwe havea ~g bfornoa € Aandnob € B.
2As a function from A x B to {true, false}, the relation ~oyiy is the constant function

Afalse: A X B — {true, false}

from A X Bto {true, false} taking value false.
3As a function from Ato P (A), the relation ~coiy is the function

Afalset A — P(A)

defined by ot
Atrye(a) =D

foreacha € A.

EXAMPLE 1.1.9 » THE CHARACTERISTIC RELATION OF A SET

The characteristic relation on A of Sets, 22 of ??is another example of a relation. It
is in fact the unique relation on A making the following conditions equivalent,
foreacha, b € A:

1. We havea ~q b.

2. Wehavea = b.

EXAMPLE 1.1.10 » SQUARE ROOTS
Square roots are examples of relations:
1. Square RootsinR. The assignment x — +/x defines a relation
v=:R - P(R)
from R to itself, being explicitly given by

0 ifx =0,

B {~VIslVisl} ifx 20,

2. Square Rootsin Q. Square roots in Q are similar to square roots in R, though
now additionally it may also occur that y/—: Q — P(Q) sends a rational
number x (e.g. 2) to the empty set (since V2 ¢ Q).
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EXAMPLE 1.1.11 » COMPLEX LOGARITHMS

The complex logarithm defines a relation
log: C — P(C)
from C to itself, where we have
log(a + bi) < {|og(m) +iarg(a+ bi) + (2rik ( ke z}

foreacha + bi € C.

EXAMPLE 1.1.12 » MORE EXAMPLES OF RELATIONS

See [Wikz22] for more examples of relations, such as antiderivation, inverse
trigonometric functions, and inverse hyperbolic functions.

1.2 The Category of Relations

DEFINITION 1.2.1 » THE CATEGORY OF RELATIONS
The category of relations is the category Rel where
- Objects. The objects of Rel are sets;

- Morphisms. Foreach A, B € Obj(Sets), we have

def

Rel(A, B) = Rel(A, B);

- Identities. For each A € Obj(Rel), the unit map
u‘ﬁe': pt — Rel(A, A)

of Rel at A is defined by

id§6| déf ){A(_ly _2)’

where y4(—1,—2) is the characteristic relation of A of Sets, 22 of 2?;

- Composition. For each A, B, C € Obj(Rel), the composition map

ot ot Rel(B,C) x Rel(A, B) — Rel(4,C)
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of Rel at (A, B, C) is defined by

def

SRS RESOR

foreach (S, R) € Rel(B, C) x Rel(A, B), where S ¢ R is the composition of
S and R of Definition 2.11.1.

1.3 The Closed Symmetric Monoidal Category of Relations

DEFINITION 1.3.1 » THE CLOSED SYMMETRIC MONOIDAL CATEGORY OF RELATIONS

The closed symmetric monoidal category of relations is the closed symmetric
monoidal category (Rel , X, ¥gel, a®¢!, 1R¢!, pRe! oRel Hompe ) consisting of

- The Underlying Category. The category Rel of sets and relations;
- The Monoidal Product. The functor
X: Rel x Rel — Rel
where
- Action on Objects. We have
def

X(A,B) = AX B,

where A X B is the Cartesian product of sets of Sets, ??;

- Action on Morphisms. For each pair of morphisms

R: A+ B,
S:C-+D

of Rel, the image
RxS:AXxC -+ BxD
of (R, S) by x is the relation
RxS8: (AXxC) X (BxD)— {true, false}

of Definition 2.8.1;




1.3 The Closed Symmetric Monoidal Category of Relations

1

o

Rel

s xo((X) xid) = x o (idx (X)), (x)xid e
=

- The Monoidal Unit. The functor

¥Rel: pt — Rel

picking the punctual set pt;

- The Associator. The natural isomorphism

Rel x Rel x Rel idx—(x)> Rel x Rel

A ‘
X
Rel x Rel ———— Rel,
whose component
a5t (AXB)xC + Ax (BxC)
at (A, B, C) is defined by declaring
((ar b)! C) Naiellic (a,’ (b,! C,))

iffa=a’,b="0b",andc =¢’;

- The Left Unitor. The natural isomorphism

KRelxid

pt X Rel ——— Rel X Rel
\
\ 7
\
- I
Rel . Rel (, - = Catsp \ ARe
AT ><o(u< ><|d)=/1Re| , N .
\
Catsy N
AReI \\\

whose component
ARl g x A b A
at Ais defined by declaring
(*, a) ""Aiel b

iffa = b;
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- The Right Unitor. The natural isomorphism

q Rel
Rel xpt —X*¥—,
\
\ 7
| Rel) _=. Cat \ o
o) S
\
whose component
PRl AX g b A
at Ais defined by declaring
(a, %) ~ et b
Pa
iffa = b;
- The Symmetry. The natural isomorphism
Rel x Re| ———
g,Rel. X = X 0 aCatsz
: Rel,Rel’ Gt Re'
ReIRel
ReI X Rel

whose component
754 AXB > BxA
at (A, B) isdefined by declaring
(a,6) ~yz (V')
iffa =a"andb =10
- The Internal Hom. The bifunctor'

Homp: Rel°”? x Rel — Rel

Rel x Rel
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defined by

Homge (A, B) € Ax B
for each A, B € Obj(Rel), with its left and right partial functors being
adjoint to X, witnessed by bijections of sets?

Rel(A x B,C) = Rel(A, Homg (B, C))
“'Rel(A, Bx C),
Rel(A x B,C) = Rel(B, Homge (A, C))

def

“Rel(B,Ax C),

naturalin A, B, C € Obj(Rel).

"More precisely, Hompgg, is given by the composition

Rel°P x Rel — Rel X Rel = Rel,

where the self-duality equivalence Rel°P = Rel comes from 2? of Proposition 1.6.1.
2Indeed, we have

Rel(A x B,C) 0t:EfSets(A X B x C, {true, false})
&M Rel(A, B x C)

<Rel (A, Homgg (B, C)),

and similarly for the isomorphism Rel (A x B,C) = Rel(B, Hompge (A, C)).

1.4 The2-Category of Relations

DEFINITION 1.4.1 » THE 2-CATEGORY OF RELATIONS

The 2-category of relations is the locally posetal 2-category Rel where

- Objects. The objects of Rel are sets;

- Hom-Posets. For each A, B € Obj(Sets), we have

def

Hompgel (A, B) = Rel(A, B)

def

“ (Rel(A, B), C);

- Identities. For each A € Obj(Rel), the unit map
Rel pt — Rel(A, A)
of Rel at A is defined by

. def
idRe = y4(-1,-2),
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where y4(—1, —2) is the characteristic relation of A of Sets, 22 of 22;
- Composition. Foreach A, B, C € Obj(Rel), the composition map’

oRel o1 Rel(B,C) x Rel(4, B) — Rel(A,C)

of Rel at (A, B, C) is defined by

def
SoRel R=SoR

foreach (S, R) € Rel(B,C) x Rel(A, B), where S ¢ R is the composition
of S and R of Definition 2.11.1.

"Note that this is indeed a morphism of posets: given relations Ry, R, € Rel(A, B) and S, S, €
Rel(B, C) such that

Rl C Rz,
S] C Sz,

we havealsoS; o R| € S ¢ R».

1.5 The Double Category of Relations

DEFINITION 1.5.1 » THE DOUBLE CATEGORY OF RELATIONS

The double category of relations is the locally posetal double category Rel!
where

. Objects. The objects of Rel®®' are sets;

19" are maps of sets

- Vertical Morphisms. The vertical morphisms of Re
f: A— B;

|db|

- Horizontal Morphisms. The horizontal morphisms of Rel®*" are relations

R: A X;

- 2-Morphisms. A2-cell

R
A—+— B

|||

a
y

X ——Y
S

—

8
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of Rel¥! is either non-existent or an inclusion of relations of the form
AxB -2 {true, false}
R c S o (f X g)’ fXg| C/ ‘id(true,false)

XxY — {true, false};

- Horizontal ldentities. The horizontal unit functor

dbl
pRel™ RelgIbI — RelﬁIIbI

of Rel?! is the functor where

- Action on Objects. For each A € Obj (Relgb'), we have
¥a £ xa(=1,-2);

- Action on Morphisms. For each vertical morphismf: A — B of Rel®®!,
i.e. each map of sets f from A to B, the identity 2-morphism

¥a

A—F— A

|

-
—-

|
¥f
y
—t

¥

o]

of f is the inclusion

AXA _CvD) {true, false}

XB ° (f X f) c ){A! fxf‘ C ‘id{true,false}

Bx B ———— {true, false}
x(—1,—2)

of Sets, Definition 1.2.3;

- Vertical Identities. Foreach A € Ob]'(ReIdb'),We have

. Refdbl def .
|d§eI = idy;




1.5

The Double Category of Relations

16

- Identity 2-Morphisms. For each horizontal morphism R: A - B of Rel®®,
the identity 2-morphism

4

A B
idg idB
A B

=

of R is the identity inclusion

BxA % {true, false}

R c R’ idBXidAl C/ ‘id{true,false}

BxA — {true, false};

- Horizontal Composition. The horizontal composition functor

dbl
QReI - Re |c11bl Xd ! Relclibl — Reldbl
Reljy

of Rel?! is the functor where

R s
- Action on Objects. For each composable pair A -+ B —» C of hori-
zontal morphisms of Rel®!, we have

SORESOR,

where S ¢ R is the composition of R and S of Definition 2.11.1;

- Action on Morphisms. For each horizontally composable pair

A—|—> C
|,,
Z

||B B
b

X—|—>

—
I

~

B
¥
_|_,
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of 2-morphisms of Rel®!, i.e. for each pair

AxB & {true, false} BxC -5 {true, false}
fXg‘ C ‘id{true,false) th| C ‘ id{true false}
XxY —- {true, false} YXxZ - {true, false}

of inclusions of relations, the horizontal composition

SOR
A—F— C

Bou

—

h

4
X ——Z
veT

of @ and f is the inclusion of relations

AxC R, {true, false}
(U < T) o (f X h) c (S < R) th| C/ ‘id{true,false}

XxZ " {true, false},

which isjustified by noting that, given (a, ¢) € A X C, the statement
- Wehave a ~wor)o(fxh) ¢ i€ f(a) ~uor h(c), ie.thereexists
some y € Y such that:
1. We havef(a) ~7 y;
2. Wehave y ~y h(c);
isimplied by the statement
- We have a ~g,p ¢, i.e.there exists some b € B such that:
1. We havea ~g b;
2. Wehaveb ~g ¢;
since:
- Ifa ~g b, thenf(a) ~r g(b),asT o (f X g) CR;
- Ifb ~s c,then g(b) ~y h(c),asU o (gxh) CS;
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F G

- Vertical Composition of 1-Morphisms. For each composable pair A—B—C
of vertical morphisms of Rel?!, i.e. maps of sets, we have

Reldb! . def X

go v f=gof;

- Vertical Composition of 2-Morphisms. For each vertically composable pair

A —|—> X B —|—> Y
f o B k
{ y

B —|—> Y C —|—> Z
of 2-morphisms of Rel®?!, i.e. for each each pair
AxX 2 {true, false} BxY -2 {true, false}
fXg| C/ ‘id(true,false) th| C/ ‘id(true,false}
BxY — {true, false} CxZ — {true, false}

of inclusions of relations, we define the vertical composition

of @ and f3 as the inclusion of relations

AxX 2, {true, false}
o[(hof)x(kog)] CR, (hOf)X(kcg)‘ C ‘id(cme,false,

CxZ — {true, false}
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given by the pasting of inclusions

AxX 2 {true, false}
fXg C/ id(true,false}
BXY —s— {true,false}

hxk C id{true false}

CxZ — {true, false},

which is justified by noting that, given (a4, x) € A X X, the statement
- We have h(f(a)) ~r k(g(x));

isimplied by the statement
- We havea ~p x;

since

- Ifa ~g x,thenf(a) ~s g(x),asSo(fxXg) CR;
- Ifb ~g y,thenh(b) ~7 k(y),asT o (hxk) C S, and thus, in
particular:
- Iff(a) ~s g(x), thenh(f(a)) ~1 k(g(x))

- Associators. For each composable triple A —{—> B —|—> C —|—> D of hori-
zontal morphisms of Rel®?', the component

R S T
A—>B—+C—D
R (TES)OR=T o (SOR), idA| ;Si,ib.ﬂ "

A—+> B+ C—+ D
R 3 T

of the associator of Rel9?' at (R, S, T) is the identity inclusion

(ToS)oR
_

AXB {true, false}

(ToS)oR=To(SoR)

- ‘ id{true false}

AX B SN {true, false},
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justified by Item 2 of Proposition 2.11.5;

- Left Unitors. For each horizontal morphism R: A b B of Rel®' the com-

ponent

A—4+—>B—4—B
| |
T T

Reldb! =
A" 1 ¥pOR=R, idy Agddbl idp
A } B
R

of the left unitor of Rel®?" at R is the identity inclusion

oR
AxB 225, {true, false}

RZ)(BOR,

// ‘ id{true,false}

AXB — {true, false},

justified by Item 3 of Proposition 2.11.5;

- Right Unitors. For each horizontal morphism R: A - B of Rel®® the

component
¥a R
A f A : B
Reldbl =
PR :ROK¥4, =R, idy p}Fgeldb' idg
A | B
of the right unitor of Rel" at R is the identity inclusion
Roya
AX B —= {true, false}
R = R < )(A’ // ‘id{true,false}

AXB — {true, false},

justified by Item 3 of Proposition 2.11.5.
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1.6 Properties of the Category of Relations

PROPOSITION 1.6.1 » PROPERTIES OF THE CATEGORY OF RELATIONS

Let A and B be sets.

1. Self-Duality I. The category Rel is self-dual, i.e. we have an equivalence of
categories Rel°P = Rel.

2. Self-Duality 1. The bicaetqegory Rel is self-dual, i.e. we have a biequivalence
of bicategories Rel° = Rel.

3. Equivalences and IsomorphismsinRel. LetR: A b B be a relation from A to
B. The following conditions are equivalent:

(@) TherelationR: A b Bisanequivalencein Rel.

(b) TherelationR: A - Bisanisomorphismin Rel, i.e. there exists a
relation R~': B 4 A from B to A such that we have

R71 oR = XA
RoR'= XB-
(c) There exists a bijectionf: A = BwithR = ().
4. Adjunctionsin Rel. We have a natural bijection

{Adjunctionsin Rel} z{ Functions }
from Ato B ~ fromAtoB )’

5. Monadsin Rel \We have a natural bijection

{ Monads in

Relon A } = {Preorderson A}.

6. Comonadsin Rel We have a natural bijection

Comonadsin) _
{ Relon A }= {Subsets of A}.

7. AsaKleisli Category. We have an isomorphism of categories
Rel = FreeAlgp,

where P is the powerset monad of Monads, Example 3.11.1.
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8. Co/Completeness (Or Lack Thereof). The category Rel is not co/complete, but
admits some co/limits:
(@) Zero Objects. The category Rel has a zero object, the empty set @.

(b) Co/Products. The category Rel has co/products, both given by disjoint
union of sets.

(c) Lack of Co/Equalisers. The category Rel does not have co/equalisers.

(d) Limits of Graphs of Functions. The category Rel has limits whose arrows
are all graphs of functions.

(e) Colimits of Graphs of Functions. The category Rel has colimits whose
arrows are all graphs of functions, and these agree with the corre-
sponding limits in Sets.

9. Closedness. The bicategory Rel is a closed bicategory, where given a relation
R: A-$ BandasetX:

- Right Kan Extensions. The right adjoint
Rang: Rel(A,X) — Rel(B,X)

to the precomposition functor R*: Rel(B, X) — Rel(A, X) is given
by

Rang(S) d:ef/ Hom e false) (R(;z’ Sz;l)
acA

foreach S € Rel(A, X),sowe have b ~gan,(s) x iff, foreacha € A, if
a ~g b,thena ~g x.

- Right Kan Lifts. The right adjoint to the postcomposition functor
Riftg: Rel(X,B) — Rel(X, A)

tothe postcomposition functor R, : Rel(X, A) — Rel(X, B) isgiven
by

RiftR(S) d:ef / Hom{true,false} (Rlil ’ 822)
beB

foreach S € Rel(X, B), sowe have x ~pii, (s) aiff, foreachb € B, if
a ~g b, thenx ~g b.
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PROOF1.6.2 » PROOF OF PROPOSITION 1.6.1

Item1: Self-Duality |
Omitted.
Item 2: Self-Duality II

Omitted.

Item 3: Equivalences and Isomorphisms in Rel

Omitted.
Item 4: Adjunctions in Rel

Indeed, an adjunction in Rel from A to B consists of a pair of relations
R: A-$ B,
S: B A

together with inclusions

)(ACROS,
SoR C yp.

These conditions then imply the following statements:

(x) Givena € A, there existssomeb € Bsuchthata ~g bandb ~g a,and
thus R is an entire relation.

(%) Ifa ~g b, then there exists, by the above item, some b’ € B such that
a ~g b"andb’ ~g a. Butsince S ¢ R C yp,wehaveb = b’,and thus Risa
functional relation.

Conversely, every functionf: A — B gives rise to an adjunction I'(f) l“(f)Jr in
Rel from A to B.

Item 5: Monads in Rel

Omitted.
Item 6: Comonads in Rel

Omitted.
Item 7: As a Kleisli Category

Omitted.
Item 8: Co/Completeness (Or Lack Thereof)
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Omitted.
Item 9: Closedness
Omitted. =

2 Operations With Relations

2.1 Graphs of Functions
Letf: A — Bbea function.
The graph of f is the relation T'(f) : A - B defined as follows:

- Viewing relations as subsets of A X B, we define

def

T(f) ={(a,f(a)) € Ax Bla € A};

- Viewing relations as functions A X B — {true, false}, we define

r =
Fas false otherwise

et {true ifb = f(a),

foreach (a,b) € AX B;

- Viewing relations as functions A — P(B), we define

def

[F(H)](a) = {f(a)}
foreacha € A, i.e. we defineT(f) as the composition

A= B2, peB).

PROPOSITION 2.1.2 » PROPERTIES OF GRAPHS OF FUNCTIONS

Letf: A — Bbeafunction.

1. Functoriality. The assignment A +— T'(A) defines a functor

I': Sets — Rel
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where

- Action on Objects. For each A € Obj(Sets), we have

def

T(A) € 4;

- Action on Morphisms. For each A, B € Obj(Sets), the action on Hom-
sets

Tap: Sets(A B) — Rel(T(A),T(B))
——————
eRel(A,B)

of T'at (A, B) isdefined by

def

Tas(f) =T(f),
where T'(f) is the graph of f as in Definition 2.1.1.

2. Internal Adjointness. We have an adjunction

T(f)
—t
(Frar@): 4+ B
&I/
r(f)’
in Rel.
3. Adjointness. We have an adjunction
r
P
(T4P,): Sets L Rel,
—
P

witnessed by a bijection of sets
Rel(T(A), B) = Sets(A, P(B))
naturalin A € Obj(Sets) and B € Obj(Rel).
4. Cocontinuity. The functorT': Sets — Rel of ltem 1 preserves colimits.

5. Characterisations. Let R: A - B be a relation. The following conditions
are equivalent:
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(@) Thereexistsa functionf: A — BsuchthatR =T(f).
(b) Therelation R is total and functional.

(©) The weak and strong inverse images of R agree, i.e. we have R™! =
R_y.

(d) Therelation R has a right adjoint RYinRel.

PROOF 2.1.3 » PROOF OF PROPOSITION 2.1.2

Item 1: Functoriality

Omitted.

Item 2: Internal Adjointness

This follows from Item 4.

Item 3: Adjointness

Omitted.

Item 4: Cocontinuity
Omitted.

Item 5: Characterisations

We claim that Items (2) to (d) are indeed equivalent:
- Item (a) < Item (b). Clear.

- Item (a) <= Item (c). The implication Item (a) = Item (b) is clear.
Conversely,if R~! = R_;, then we have

- Item (a) = Item (c). Clear.
- Item (c) = Item (b). We claim that R is indeed total and functional:

- Totality. If we had R(a) = @ forsomea € A, then we would have
a € R_1(D),sothatR_; (@) # @. Butsince R~' (@) = @, this would
imply R_; (@) # R™'(®), a contradiction. Thus R(a) # @ forall
a € Aand Ris total.

- Functionality. 1fR=! = R_;, then we have

{a} = R7'({b})
=R ({b})
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foreachb € R(a) and eacha € A, and thus R(a) c {b}. But
since R is total, we must have R(a) = {b}, and thus we see that R is
functional.

- Item (a) <= Item (d). This follows from Item 4 of Proposition 1.6.1.

This finishes the proof. =

2.2 Representable Relations
Let Aand B be sets.

DEFINITION 2.2.1 » REPRESENTABLE RELATIONS
Letf: A— Bandg: B — Abe functions.’

1. The representable relation associated to f is the relation yr: A > B
defined as the composition

id
AXB m> B x Bﬂ {true, false},

i.e. bydeclaringa ~,, bifff(a) = b.

2. The corepresentable relation associated to g is the relation y8: B 4 A
defined as the composition

id
Bx A & A X A—Xi> {true, false},

i.e. bydeclaringb ~ aiffg(b) = a.

"More generally, given functions
fiA—>C,
g:B—D
and arelation B 4 D, we may consider the composite relation

fxg R
AX B —> C x D —> {true, false},

forwhich we have a ~go (rxq) bifff(a) ~r g(b).

2.3 The Domainand Range of a Relation

Let A and B be sets.
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DEFINITION 2.3.1 » THE DOMAIN AND RANGE OF A RELATION

LetR c A X Bbearelation.”?

1. The domain of R is the subset dom(R) of A defined by

def

dom(R) = {a €A

there exists some b € B
such thata ~g b ’

2. Therangeof R is the subset range(R) of B defined by

range(R) < {b €B

there exists somea € A
suchthata ~g b ’

"Following Categories, Definition 3.3.1, we may compute the (characteristic functions associated
to the) domain and range of a relation using the following colimit formulas:

Xdom(R) (@) = Cgiilr;n(Rﬁ) (a € A)
= \/ RY,
beB
Xrange(R) (b) = CaOLiT(RZ) (b € B)
= \/ RY,
acA

where thejoin \/ is taken in the poset ({true, false}, <) of Sets, Definition A.2.5.
2Viewing Rasa functionR: A — P(B), we have

dom(R) = colim(R(y))
yey
= | Jro),
yey
range(R) = coéi?(R(x))

= U R(x),

xeX

2.4 Binary Unions of Relations

Let Aand B be sets and let R and S be relations from A to B.

DEFINITION 2.4.1 » BINARY UNIONS OF RELATIONS

The union of Rand S" is the relation R U S from A to B defined as their union as
sets.

"Further Terminology: Also called the binary union of R and S, for emphasis.
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REMARK 2.4.2 » UNWINDING DEFINITION 2.4.1, |

Viewing relations as functions A X B — {true, false}, we may define the union
of Rand S as the relation R U S from A to B defined by

def

RUS={(a,b) e Bx A|wehavea ~g bora ~g b}.

REMARK 2.4.3 » UNWINDING DEFINITION 2.4.1, ||

Viewing relations as functions A — P(B), we may define the union of Rand §
as the relation R U S from A to B defined by

def

[R U S](a) £ R(a) US(a)

foreacha € A.

PROPOSITION 2.4.4 » PROPERTIES OF BINARY UNIONS OF RELATIONS

LetR, S, R, and R; be relations from Ato B, and let S and S; be relations from
BtoC.

1. Interaction With Inverses. We have

(RUS)" =RTUST.

2. Interaction With Composition. We have

(S1oR) U (S20Ry) % (S1US2) o (R URy).

PROOF 2.4.5 » PROOF OF PROPOSITION 2.4.4

Item 1: Interaction With Inverses

Clear.

Item 2: Interaction With Composition

Unwinding the definitions, we see that:
1. The condition for (S; ¢ Ry) U (S ¢ Rp) is:

(@) Thereexistssome b € Bsuch that:

(i) a ~p, bandb ~$ G
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or
(l) a ~g, bandb ~s, €
3. The condition for (S; U S3) o (R; U Ry) is:
(@) Thereexistssomeb € Bsuch that:
(i) a ~pR, bora ~R, b;
and
(i) b~g corb~g, c.

These two conditions may fail to agree (counterexample omitted), and thus the
two resulting relations on A x C may differ. |

2.5 Unions of Families of Relations

Let Aand B be sets and let {R; };<; be a family of relations from A to B.

DEFINITION 2.5.1 » THE UNION OF A FAMILY OF RELATIONS

The union of the family {R; };.; is the relation | J;<; R; from A to B defined as its
union as a family of sets.

REMARK 2.5.2 » UNWINDING DEFINITION 2.5.1, |

Viewing relations as functions A X B — {true, false}, we may define the union
of the family {R; };c as the relation | J;c; R; from Ato B defined by

there exists somei € |
suchthata ~g, b ’

UR,» o {(a, b) € (Ax B!

iel

REMARK 2.5.3 » UNWINDING DEFINITION 2.5.1, I1

Viewing relations as functions A — P(B), we may define the union of the family
{Ri}ic; as the relation | ;¢ R; from Ato B defined by

r

iel

@ = JRi(@

iel

foreacha € A.
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PROPOSITION 2.5.4 B PROPERTIES OF UNIONS OF FAMILIES OF RELATIONS
Let Aand B be sets and let {R;};<; be a family of relations from A to B.
1. Interaction With Inverses. We have

(U R,»)T = JRL.

iel iel

PROOF 2.5.5 » PROOF OF PROPOSITION 2.5.4

Item 1: Interaction With Inverses
Clear. =

2.6 Binary Intersections of Relations

Let Aand B be sets and let R and S be relations from A to B.

DEFINITION 2.6.1 » BINARY INTERSECTIONS OF RELATIONS

The intersection of R and S’ is the relation R N S from A to B defined as their
intersection as sets.

" Further Terminology: Also called the binary intersection of R and S, for emphasis.

REMARK 2.6.2 » UNWINDING DEFINITION 2.6.1, |

Viewing relations as functions A X B — {true, false}, we may define the inter-
section of R and S as the relation R U S from A to B defined by

def

RNS={(ab) e BxA|wehavea ~g banda ~g b}.

REMARK 2.6.3 » UNWINDING DEFINITION 2.6.1, I|

Viewing relations as functions A — P(B), we may define the intersection of R
and S as the relation R U S from A to B defined by

def

[RNS](a) = R(a) N S(a)

foreacha € A.
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PROPOSITION 2.6.4 » PROPERTIES OF BINARY INTERSECTIONS OF RELATIONS

LetR, S, R;,and R, be relations from Ato B, and let S; and S, be relations from
BtoC.

1. Interaction With Inverses. We have

(RNS)T=R" ns.

2. Interaction With Composition. We have

(S1oR1) N(S20R2) = (S1NS2) o (R NRy).

PROOF 2.6.5 » PROOF OF PROPOSITION 2.6.4

Item 1: Interaction With Inverses

Clear.

Item 2: Interaction With Composition

Unwinding the definitions, we see that:
1. The condition for (S; ¢ Ry) N (Sy ¢ Ry) is:

(@) Thereexistssomeb € Bsuch that:
(i) a ~g, bandb ~g, ¢
and
(l) a ~R, bandb ~S, €
3. The condition for (S; N S;) o (R N Ry) is:
(@) Thereexistssomeb € Bsuchthat:
(i) a ~p, banda ~R, b;
and
(i) b ~S candb ~s, €.

These two conditions agree, and thus so do the two resulting relationson A x C.

2

2.7 Intersections of Families of Relations

Let Aand B be setsand let {R; };.; be a family of relations from A to B.
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w

DEFINITION 2.7.1 » THE INTERSECTION OF A FAMILY OF RELATIONS

The intersection of the family {R; };; is the relation | ;< R; defined as its inter-
section as a family of sets.

REMARK 2.7.2 » UNWINDING DEFINITION 2.7.1, |

Viewing relations as functions A X B — {true, false}, we may define the inter-
section of the family {R;};< as the relation | J;<; R; from A to B defined by

JrE {(a, b) € (Ax B

iel

foreachi € I, we
havea ~g, b ‘

REMARK 2.7.3 » UNWINDING DEFINITION 2.7.1, |1

Viewing relations as functions A — P(B), we may define the intersection of the
family {R; };cs as the relation (;¢; R; from A to B defined by

N

iel

(@ = Ri(w)

iel

foreacha € A.

PROPOSITION 2.7.4 » PROPERTIES OF INTERSECTIONS OF FAMILIES OF RELATIONS
Let Aand B be sets and let {R;};<; be a family of relations from A to B.
1. Interaction With Inverses. We have

(U Ri)T = UR}.

iel iel

PROOF 2.7.5 » PROOF OF PROPOSITION 2.7.4

Item 1: Interaction With Inverses
Clear. =

2.8 Binary Products of Relations

LetA, B, X,and Y besets,letR: A b Bbearelationfrom Ato B,andletS: X Y
be arelationfrom X toY.
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DEFINITION 2.8.1 » BINARY PRODUCTS OF RELATIONS

The product of R and S’ is the relation R X S from A X X to B X Y defined as their
Cartesian product as sets.

"Further Terminology: Also called the binary product of R and S, for emphasis.

REMARK 2.8.2 » UNWINDING DEFINITION 2.8.1, |

In detail, the product of R and S is the relation R X S from A X X to B X Y defined
by

RxSE{((ax),(by) € (AXX) X (BxY)|wehavea ~g bandx ~g y},

i.e. where we declare (a, x) ~rxs (b, y) iffa ~g bandx ~g y.

REMARK 2.8.3 » UNWINDING DEFINITION 2.8.1, I1

Viewing relations as functions A — P(B), we may define the product of Rand S
as the relation
RxS: AxX — P(BxY)

from A X X to B X Y defined as the composition

73®
AxX 25 pByxP(Y) B P(BxY)

in Sets, i.e. by

def

[Rx S](a,x) =R(a) xS(x)
foreach (a,x) € Ax X.

PROPOSITION 2.8.4 » PROPERTIES OF BINARY PRODUCTS OF RELATIONS

Let A, B, X,and Y be sets.

1. Interaction With Inverses. Let

R: A A
S: XbX

We have
(RxS)" =R x .
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2. Interaction With Composition. Let

Ri: A B,
Si:B-$C,
Ry: X Y,
$:Y bz

be relations. We have

(S10R1) X (S20Ra) = (S1 X 82) ¢ (Ry X Ry).

Item 1: Interaction With Inverses

Unwinding the definitions, we see that:
1. We have (q, x) ~(Rx$)" (b, y) iff:

- We have (b, y) ~rxs (a,x),ie.iff:
- We have b ~p q;
- Wehave y ~s x;
2. Wehave (a, x) ~pixst (b, p) iff:
- Wehavea ~pt band x ~g: y,i.e.iff:
- We have b ~p q;

- Wehave y ~g x.

These two conditions agree, and thus the two resulting relationson A X X are
equal.

Item 2: Interaction With Composition

Unwinding the definitions, we see that:
1. We have (aq, x) ~(S10R1)X(S20R2) (¢, z) iff:

(@) Wehavea ~g,or, candx ~g,.r, z,i.e.iff:
(i) Thereexistssomeb € Bsuchthata ~g, bandb ~g, ¢;
(i) Thereexistssome y € Y suchthatx ~g, yandy ~s, z;

2. We have (aq, x) ~(81%82) ¢ (R XR2) (¢, z) iff:

PROOF 2.8.5 » PROOF OF PROPOSITION 2.4.4
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(@) Thereexistssome (b, y) € B X Y suchthat (a,x) ~g,xr, (b, y)and
(b, y) ~s,xs, (¢, 2),i.e suchthat:

(i) Wehavea ~g, bandx ~g, y;
(i) Wehaveb ~5, candy ~s, z.

These two conditions agree, and thus the two resulting relations from A x X to
C X Z areequal. =

2.9 Products of Families of Relations

Let {A;};c; and {B;};c; be families of sets, and let {R;: A; - B;};c; be a family of
relations.

DEFINITION 2.9.1 » THE PRODUCT OF A FAMILY OF RELATIONS

The product of the family {R; },; is therelation [];c; R; from [;c; Aito [1ic; Bi
defined as its product as a family of sets.

REMARK 2.9.2 » UNWINDING DEFINITION 2.9.1, |

Viewing relations as functions A X B — {true, false}, we may define the product
of the family {R;};<; as the relation [;c; R; from [;c; Aj to [ ;<1 Bi defined by

l_[ RE {(ai, bi)ier € l_[(Ai x B;)

have a; ~g. b;
iel iel iR T

foreachi € I, we}

REMARK 2.9.3 » UNWINDING DEFINITION 2.9.1, ||

Viewing relations as functions A — P(B), we may define the product of the
family {R;};c; as the relation [];c; Ri from [T;er Ai to [ 1, Bi defined by

[

iel

((@)ien) =] | RiCa)

iel

foreach (ai);er € [1ier Ri-

2.10 TheInverse of a Relation

Let A, B, and C be setsand let R C A X B be a relation.
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~

DEFINITION 2.10.1 » THE INVERSE OF A RELATION

The inverse of R is the relation RT defined by

RY < {(b,a) € Bx A|wehaveb ~g a}.

"Further Terminology: Also called the opposite of R, the transpose of R, or the converse of R.

REMARK 2.10.2 » UNWINDING DEFINITION 2.10.1, |

Viewing relations as functions A X B — {true, false}, we may define the inverse
of R as the relation RT from B to A defined by

R 2Ry

foreach (a,b) € AX B.

REMARK 2.10.3 » UNWINDING DEFINITION 2.10.1, l|

Viewing relations as functions A — P(B), we may define the inverse of R as the
relation R from B to A defined by

[RY](b) = R ({b})

={a€ AlbeR(a)}

foreach b € B, where R ({b}) is the fibre of R over {b}.

EXAMPLE 2.10.4 » EXAMPLES OF INVERSES OF RELATIONS

Here are some examples of inverses of relations.
1. Less Than Equal Signs. We have (<) = >.

2. Greater Than Equal Signs. Dually to Item 1, we have (>) = <.

PROPOSITION 2.10.5 » PROPERTIES OF INVERSES OF RELATIONS

LetR: A - BandS: B - C berelations.

1. Interaction With Ranges and Domains. \We have

dom(RT) = range(R),




N
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Composition of Relations

range(RT) =dom(R).
2. Interaction With Composition |. We have
(SoR) =RTo S

3. Interaction With Composition Il. We have

XB(_I! _2) - RORTy
xa(-1,—2) CR o R

4. Invertibility. We have
i
(RT) =R

5. Identity. We have

2h(=1,-2) = xa(-1,-2).

PROOF 2.10.6 » PROOF OF PROPOSITION 2.10.5

Item1: Interaction With Ranges and Domains
Clear.

Item 2: Interaction With Composition |

Item 3: Interaction With Composition I
Clear.

Item 4: Invertibility
Clear.

Item 5: Identity

Clear.

o
QO
-

m

2.11  Composition of Relations

Let A, B,and C besetsandletR € A X Band S c B x C berelations.
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DEFINITION 2.11.1 » COMPOSITION OF RELATIONS

The composition of R and S is the relation S ¢ R defined by

S<>Rd=8f{(a,c)eA><C

there exists some b € B such
thata ~g band b ~g ¢ )

REMARK 2.11.2 » UNWINDING DEFINITION 2.11.1, |

Viewing relations as functions A X B — {true, false}, we may define the compo-
sition of R and S as the relation S ¢ R from A to C defined by

-1 def yEB — y
(SoR)_2=/ Sy xR,

= \/Sy‘1 xR,

y€EB

where the join \/ is taken in the poset ({true, false}, <) of Sets, Definition A.2.5.

REMARK 2.11.3 » UNWINDING DEFINITION 2.11.1, ||

Viewing relations as functions A — P(B), we may define the composition of R
and S as the relation S ¢ R from A to C defined by

B -5 P(0),
SoR=lan,,(S) o R, x,{//
Lan,, (S)
A —— P(B)

where Lan,, (S) is computed by the formula
yeB
an,©I = [ apan (i v) 05,

Y€EB
= / )OS,

= U v (y) QSy

yeB

EUSy

yev

€
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foreach V € P(B). Thus, we have'

def

[S o R](a) = S(R(a))

o U S(x).

x€R(a)

Thatis: therelation Rmaysenda € Atoanumberofelements {b;};c;in B,and thenthe relation

S may send the image of each of the b;’s to a number of elements {S(b;) };¢; = {{c]'i }],e]_ } ; inC.
iS)i)ie

EXAMPLE 2.11.4 » EXAMPLES OF COMPOSITION OF RELATIONS

Here are some examples of composition of relations.

1. Composing Less/Creater Than Equal With Greater/Less Than Equal Signs. We
have
< 02 =~y

2 0 < =~y -

2. Composing Less/Greater Than Equal Signs With Less/Greater Than Equal Signs.
We have

IA
IA
Il
IA

’

>.

PROPOSITION 2.11.5 » PROPERTIES OF COMPOSITION OF RELATIONS

LetR: A-$ B,S: B+ C,andT: C + D berelations.
1. Interaction With Ranges and Domains. We have

dom(S ¢ R) c dom(R),
range(S ¢ R) C range(S).

v
v
Il

2. Associativity. We have
(ToS)oR=To(SoR).
3. Unitality. We have

)(BORIR,
RO)(AZR.
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4. Interaction With Inverses. We have

(SoR) =R oS,

5. Interaction With Composition. We have

x8(=1,—2) C Ro R,
xa(=1,—2) CRToR.

PROOF 2.11.6 » PROOF OF PROPOSITION 2.11.5
Item 1: Interaction With Ranges and Domains

Clear.

Item 2: Associativity

Indeed, we have

yeC
(ToS)oR:e(/ Tx_'Xsz)oR

X€B yeC
x
(/ T, ley)oRJ_’z

xeB

118

(T xs3) o R2,

T (1 x85) 0 R,

“1: 'x (s3oR2, )

yeC
x
. ( [ o)

T;' X (SoR)L,

x \\O\

118

:J
/
/ eC
|
/
)

def

o (SoR).

Inthe language of relations, givena € Aandd € D, the stated equality witnesses
the equivalence of the following two statements:

1. We have a ~(1.5).r d, i.e. there existssome b € B such that:
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(@) We havea ~g b;

(b) We haveb ~7.s d, i.e. there exists some ¢ € C such that:
(i) We haveb ~g c;
(ii) We havec ~1 d;

2. Wehavea ~7,(sor) d, i.e. there exists some ¢ € C such that:

(@) We havea ~g.p ¢, i.e. there exists some b € B such that:
(i) We havea ~g b;
(ii) We haveb ~g c;

(b) We havec ~7 d;

both of which are equivalent to the statement

- Thereexistb € Bandc¢ € Csuchthata ~g b ~g ¢ ~ d.

Item 3: Unitality

Indeed, we have

. X€B . .
ZBOR: ()(B)x XR_2

=\/ (zs);" X R,

x€B

=\/R’i2

xeB
xX=—1

=R

-2

and

e X€A
ROXA:E/ R;IX()(A)fz

= \/ R x ()’

x€B

=\/R;1

xeB
xX=—)

=R

In the language of relations, givena € Aand b € B:
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- The equality
XB© R=R

witnesses the equivalence of the following two statements:
1. We havea ~; B.
2. Thereexists some b’ € Bsuch that:

(@) Wehavea ~g b’
(b) Wehaveb’ ~,, b,ie. b’ =b.

- The equality
Ro XA = R

witnesses the equivalence of the following two statements:
1. There exists some a’ € Asuch that:
(@) Wehavea ~,, a’,ie.a=a’.
(b) Wehavea’ ~g b

2. We havea ~; B.

Item 4: Interaction With Inverses

Clear.
Item 5: Interaction With Composition
Clear. =

212 TheCollage of a Relation
Let Aand BbesetsandletR: A -b Bbearelation from Ato B.

DEFINITION 2.12.1 » THE COLLAGE OF A RELATION

def

The collage of R" is the poset Coll(R) = (Coll(R), <Zcoli(r)) consisting of

- The Underlying Set. The set Coll(R) defined by

def

Coll(R) € A ] B.

- The Partial Order. The partial order

Zcoll(r) : Coll(R) x Coll(R) — {true, false}
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on Coll(R) defined by

< (ab) =

wf |true ifa=bora ~g b,
false otherwise.

" Further Terminology: Also called the cograph of R.

PROPOSITION 2.12.2 » PROPERTIES OF COLLAGES OF RELATIONS

Let Aand BbesetsandletR: A b Bbearelation from Ato B.

1. Functoriality. The assignment R +— Coll(R) defines a functor’
Coll: Rel(A, B) — Pos;A1(A, B)

where

- Action on Objects. For each R € Obj(Rel(A, B)), we have

def

[Coll] (R) £ Coll(R)

foreach R € Rel(A, B), where Coll(R) is the collage of R of Defini-
tion 2.12.1;

- Action on Morphisms. Foreach R, S € Obj(Rel(A, B)), the action on
Hom-sets

Collgs: Homgei(ap)(R,S) — Hompos/Al (Coll(R), Coll(S))
of Coll at (R, S) is given by sending an inclusion
i:RcCS
to the morphism
Coll(1): Coll(R) — Coll(S)
of posets over Al defined by
[Coll()](x) = x
foreach x € Coll(R).?

2. Equivalence. The functor of Item 1 is an equivalence of categories.
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"Here Pos/Al (A, B) is the category defined as the pullback

def
Pos/Al (A, B) = pt SN

X P X pt
[A],Pos,fiby fiby,Pos,[B]

asin the diagram

Pos/Al (A B)
POS/AI X pt pt X Pos/Al
Pos .1

R N ﬁ

*Note that this is indeed a morphism of posets: if x <cqli(r) ¥,thenx = yorx ~g y,sowe have
eitherx = yorx ~g y,and thus x <co(s) ¥

PROOF 2.12.3 » PROOF OF PROPOSITION 2.12.2
Item 1: Functoriality

Omitted.
Item 2: Equivalence
Omitted. |

3 Equivalence Relations

3.1 Reflexive Relations

3.1.1 Foundations

Let Abe aset.

DEFINITION 3.1.1 » REFLEXIVE RELATIONS

A reflexive relation is equivalently:’
- An Eg-monoid in (N.(Rel(A, A)), y4);
- A pointed objectin (Rel(A, A), y4).
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"Note that since Rel (A4, A) is posetal, reflexivity is a property of a relation, instead of a structure.

REMARK 3.1.2 » UNWINDING DEFINITION 3.1.1

In detail, a relation R on A is reflexive if we have an inclusion

nR: x4 CR

of relationsin Rel(A, A), i.e.if, foreacha € A, we havea ~p a.

DEFINITION 3.1.3 » THE PO/SET OF REFLEXIVE RELATIONS ON A SET

Let A be a set.

1. The set of reflexive relations on A is the subset Rel® (4, A) of Rel (4, A)
spanned by the reflexive relations.

2. The poset of relations on A is is the subposet Rel™ (4, A) of Rel(4, A)
spanned by the reflexive relations.

PROPOSITION 3.1.4 » PROPERTIES OF REFLEXIVE RELATIONS

Let R and S be relations on A.
1. Interaction With Inverses. If R is reflexive, then sois RT.

2. Interaction With Composition. If R and S are reflexive, thensois S ¢ R.

PROOF 3.1.5 » PROOF OF PROPOSITION 3.1.4

Item 1: Interaction With Inverses

Clear.
Item 2: Interaction With Composition

m

Clear.

3.1.2 The Reflexive Closure of a Relation

Let R be a relation on A.
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DEFINITION 3.1.6 » THE REFLEXIVE CLOSURE OF A RELATION

The reflexive closure of ~ is the relation ~;§ﬂ‘ satisfying the following universal
property:?

(up) Given another reflexive relation ~5 on Asuch that R C S, there exists an
inclusion ~;§ﬂ C ~g.

"Further Notation: Also written R'ef1.
2Slogan: The reflexive closure of R is the smallest reflexive relation containing R.

CONSTRUCTION 3.1.7 » THE REFLEXIVE CLOSURE OF A RELATION

Concretely, ~;§ﬂ is the free pointed objecton R in (Rel(A, A), y4)', being given
by
Rreﬂ défR URGKA,A) AA
=RUA4
={(a,b) € AX A|wehavea ~g bora = b}.

'0r, equivalently, the free Eg-monoid on Rin (Ne (Rel (A, A)), y4).

PROOF 3.1.8 » PROOF OF CONSTRUCTION 3.1.7

Clear. =

PROPOSITION 3.1.9 » PROPERTIES OF THE REFLEXIVE CLOSURE OF A RELATION

Let R be arelation on A.

1. Adjointness. We have an adjunction

(_)reﬂ
((—)feﬂ 4 *E) Rel(A, A)_+  Rel™"(4,4),
~

oy

witnessed by a bijection of sets
Re|reﬂ(~§§ﬂ,~s) = Rel(~g, ~s),
natural in ~g € Obj(Rel'e“(A, A)) and ~5 € Obj(Rel(4, A)).

2. The Reflexive Closure of a Reflexive Relation. If R is reflexive, then R™fl = R.
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3. Idempotency. We have
(Rreﬂ ) = — Rreﬂ
4. Interaction With Inverses. We have

_yrefl
Rel(A, A) ~—— Rel(4, A)

A F

Rel(A, 4) — > Rel(4,4).

5. Interaction With Composition. We have

Rel(A, A) x Rel(A, A) = Rel(4, A)
(S < R)rEH = Sreﬂ < RrEﬂ, (_)reﬂx(_)reﬂ‘ ‘(_)reﬂ

Rel(A, A) x Rel(A, A) — Rel(A, A).

PROOF 3.1.10 » PROOF OF PROPOSITION 3.1.9

Item1: Adjointness

This is a rephrasing of the universal property of the reflexive closure of a relation,
stated in Definition 3.1.6.

Item 2: The Reflexive Closure of a Reflexive Relation

Clear.

Item 3: Idempotency

This follows from Item 2.
Item 4: Interaction With Inverses

Clear.

Item 5: Interaction With Composition

m

This follows from Item 2 of Proposition 3.1.4.
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3.2 Symmetric Relations

3.2.1 Foundations

Let Abe aset.

DEFINITION 3.2.1 » SYMMETRIC RELATIONS

Arelation R on A is symmetricif, foreach a, b € A, the following conditions are
equivalent:’

1. We havea ~p b.

2. We have b ~y a.

"Thatis, R is symmetricif RT = R.

DEFINITION 3.2.2 » THE PO/SET OF SYMMETRIC RELATIONS ON A SET
Let A beaset.

1. The set of symmetric relations on A is the subset RelY™™ (A, A) of
Rel(A, A) spanned by the symmetric relations.

2. The posetofrelations on A is is the subposet Rel*Y ™™ (A, A) of Rel(A4, A)
spanned by the symmetric relations.

PROPOSITION 3.2.3 » PROPERTIES OF SYMMETRIC RELATIONS

Let R and S be relations on A.
1. Interaction With Inverses. If R is symmetric, then sois RT.

2. Interaction With Composition. If R and S are symmetric, thensois S ¢ R.

PROOF 3.2.4 » PROOF OF PROPOSITION 3.2.3

Item 1: Interaction With Inverses

Clear.

Item 2: Interaction With Composition

Clear. =

3.2.2 The Symmetric Closure of a Relation

Let R be a relation on A.
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DEFINITION 3.2.5 » THE SYMMETRIC CLOSURE OF A RELATION

The symmetric closure of ~ is the relation ~;™™"

versal property:*

satisfying the following uni-

(up) Given another symmetricrelation ~g on Asuchthat R C S, there exists an

inclusion ~™" C ~g.

"Further Notation: Also written R&Y™™,
2Slogan: The symmetric closure of R is the smallest symmetric relation containing R.

CONSTRUCTION 3.2.6 » THE SYMMETRIC CLOSURE OF A RELATION

Concretely, ~;‘§'mm is the symmetric relation on A defined by

RY™™ ZR U R
={(a,b) € AX A|wehavea ~g borb ~p a}.

PROOF 3.2.7 » PROOF OF CONSTRUCTION 3.2.6

Clear. =

PROPOSITION 3.2.8 » PROPERTIES OF THE SYMMETRIC CLOSURE OF A RELATION

Let R be a relation on A.

1. Adjointness. We have an adjunction

(_)symm
(5)¥™ 435): Rel(4,A)” +  RelY™ (4, A),
~—

witnessed by a bijection of sets
Rel&Y™™ (~2’mm, ~s) = Rel(~g, ~s),
natural in ~g € Obj(Rel®™™ (A, A)) and ~5 € Obj(Rel(A, A)).

2. The Symmetric Closure of a Symmetric Relation. If R is symmetric, then
R¥YmMM = R,

3. Idempotency. We have

(Rsymm)symm — Rsymm
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4. Interaction With Inverses. We have

(- symm

Rel(A,A) ——— Rel(A, A)
symm
| [

Rel(A, A) —— Rel(A, A).

(_)wmm

5. Interaction With Composition. We have
Rel(4, A) X Rel(A, A) —— Rel(4, A)

(S RY™™ = MM o YT, <->symmx<->“”"m‘ ‘“fymm

Rel(A, A) X Rel(A, 4) —— Rel(4, 4).

PROOF 3.2.9 » PROOF OF PROPOSITION 3.2.8

Item 1: Adjointness

Thisisarephrasing of the universal property of the symmetric closure of a relation,
stated in Definition 3.2.5.

Item 2: The Symmetric Closure of a Symmetric Relation

Clear.

Item 3: Idempotency
This follows from Item 2.

Item 4: Interaction With Inverses

Clear.

Item 5: Interaction With Composition

[

This follows from Item 2 of Proposition 3.2.3.

3.3 Transitive Relations

3.3.1 Foundations

Let A be a set.
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N

DEFINITION 3.3.1 » TRANSITIVE RELATIONS

A transitive relation is equivalently:’
- Anon-unital E;-monoid in (N. (Rel (A4, A)), 0);

- A non-unital monoid in (Rel (A4, A), ©).

"Note that since Rel (A, A) is posetal, transitivity is a property of a relation, instead of a structure.

REMARK 3.3.2 » UNWINDING DEFINITION 3.3.1

In detail, a relation R on A is transitive if we have an inclusion
yr: RoR C R
of relationsin Rel(A, A), i.e. if, foreach a, c € A, we have:

(x) Ifa ~g bandb ~p c,thena ~¢ c.

DEFINITION 3.3.3 » THE PO/SET OF TRANSITIVE RELATIONS ON A SET
Let A be a set.

1. The set of transitive relations from A to B is the subset Rel"™"(A) of
Rel(A, A) spanned by the transitive relations.

2. The poset of relations from A to B is is the subposet Rel™@"(A) of
Rel(A, A) spanned by the transitive relations.

PROPOSITION 3.3.4 » PROPERTIES OF TRANSITIVE RELATIONS
Let R and S be relations on A.
1. Interaction With Inverses. If R is transitive, then so is R

2. Interaction With Composition. If R and S are transitive, then S ¢ R may fail to
be transitive.

PROOF 3.3.5 » PROOF OF PROPOSITION 3.3.4

Item 1: Interaction With Inverses

Clear.
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Item 2: Interaction With Composition

See [MSE 2096272]. =

Intuition: Transitivity for R and S fails to imply that of S ¢ R because the composition operation
for relations intertwines R and S in an incompatible way:

1. Ifa ~sog candc¢ ~g,, €, then:
(a) Thereissomeb € Asuchthat:
i) a~gb;
(i) b~gc
(b) Thereissomed € Asuch that:
(i) c~rd;
(i) d~ge.

3.3.2 The Transitive Closure of a Relation

Let R be a relation on A.

DEFINITION 3.3.6 » THE TRANSITIVE CLOSURE OF A RELATION

The transitive closure of ~ is the relation ~§{a”51

sal property:?

satisfying the following univer-

(up) Given another transitive relation ~g on Asuch that R C S, there exists an
inclusion ~33" C ~g.

"Further Notation: Also written R'"S,
2Slogan: The transitive closure of R is the smallest transitive relation containing R.

CONSTRUCTION 3.3.7 » THE TRANSITIVE CLOSURE OF A RELATION

Concretely, ~32™ is the free non-unital monoid on R in (Rel(A, A),©)", being
given by

[

trans def on
R = R

n=1

[ee)

n=1

d:“{(a,b) € AXB

there exist (x1,...,x,) € R*" such
thata ~g x; ~g -++ ~R X ~r b ’

10r, equivalently, the free non-unital E;-monoid on Rin (N (Rel (A, A)), ©).




3.3 Transitive Relations

PROOF 3.3.8 » PROOF OF CONSTRUCTION 3.3.7

Clear. =

PROPOSITION 3.3.9 » PROPERTIES OF THE TRANSITIVE CLOSURE OF A RELATION
Let R be arelation on A.

1. Adjointness. We have an adjunction

(_)trans
((_)trans 3 E) Rel(A, A)/F R8|trans(A’ A),
—

witnessed by a bijection of sets
Re|trans(~§{ans, ~s) = Rel(~g, ~s),
naturalin ~g € Obj(Rel"™"*(A, A)) and ~5 € Obj(Rel(A, B)).
2. The Transitive Closure of a Transitive Relation. If R is transitive, then R™"S = R.

3. Idempotency. We have

(Rtrams)tra”S — Rtrans.
4. Interaction With Inverses. We have

Rel(A, A) =, Rel(A, A)
N trans transy T
(R ) = (R=), ) ‘(—)T

Rel(A, A) ( Rel(A, A).

=) trans

5. Interaction With Composition. We have
Rel(4, A) X Rel(A, A) —— Rel(4, A)

poss
(S <>R)trams + gtrans ORtfanS’ (_)transx(_)tmns‘ X ‘<_)trans

Rel(4, A) X Rel(A, A) —— Rel(4, A).
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PROOF 3.3.10 » PROOF OF PROPOSITION 3.3.9

Item 1: Adjointness

This is a rephrasing of the universal property of the transitive closure of a relation,
stated in Definition 3.3.6.

Item 2: The Transitive Closure of a Transitive Relation

Clear.

Item 3: Idempotency
This follows from Item 2.

Item 4: Interaction With Inverses

We have
trans o on
(RT) = U (RT) (Construction 3.3.7)
n=1
(o)
= LJ(RO")T (Item 4 of Proposition 2.11.5)
n=1
&9 T
= U R°" (Item 1 of Proposition 2.5.4)
n=1
= (RtranS)T. (Construction 3.3.7)

Item 5: Interaction With Composition

m

This follows from Item 2 of Proposition 3.3.4.

3.4 Equivalence Relations

3.4.1 Foundations

Let Abeaset.

DEFINITION 3.4.1 » EQUIVALENCE RELATIONS

Arelation R is an equivalence relation if it is reflexive, symmetric, and transitive.’

"Further Terminology: If instead R is just symmetric and transitive, then itis called a partial equiva-
lence relation.
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EXAMPLE 3.4.2 » THE KERNEL OF A FUNCTION

The kernel ofafunctionf: A — Bisthe equivalence ~yer(r) on A obtained by
declaring a ~ger(r) bifff(a) =f(b).

"The kernel Ker(f) : A $5 Aoff is the induced monad of the adjunction T'(f) - F(f)T: A2 B
in Rel.

DEFINITION 3.4.3 » THE PO/SET OF EQUIVALENCE RELATIONS ON A SET
Let A and B be sets.

1. The setof equivalence relations from A to B is the subset Rel*9 (4, B) of
Rel(A, B) spanned by the equivalence relations.

2. The poset of relations from A to B is is the subposet Rel®*d(A, B) of
Rel(A, B) spanned by the equivalence relations.

3.4.2 TheEquivalence Closure of a Relation

Let R be a relation on A.

DEFINITION 3.4.4 » THE EQUIVALENCE CLOSURE OF A RELATION

The equivalence closure’ of ~ is the relation ~},**

versal property:3

satisfying the following uni-

(up) Given another equivalence relation ~g on Asuch thatR C S, there exists
aninclusion ~3! C ~s.

"Further Terminology: Also called the equivalence relation associated to ~ .
2Further Notation: Also written R®9.
3Slogan: The equivalence closure of R is the smallest equivalence relation containing R.

CONSTRUCTION 3.4.5 » THE EQUIVALENCE CLOSURE OF A RELATION

Concretely, ~;q is the equivalence relation on A defined by

_ ((Rsymm)tranS) refl
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there exist (x1, ..., x,) € R*" satisfying at least one
of the following conditions:

1. The following conditions are satisfied:

(a,b) € AX B (@) Wehavea ~g xjorx; ~g a;
=1(ab) e Ax .
(b) We have x; ~g xijs] OF Xiy1 ~r Xx; for

eachl<i<n-1;

(0 Wehaveb ~g x,orx, ~g b;

2. Wehavea = b.

From the universal properties of the reflexive, symmetric, and transitive closures
of a relation (Definitions 3.1.6, 3.2.5 and 3.3.6), we see that it suffices to prove that:

1. The symmetric closure of a reflexive relation is still reflexive;
2. The transitive closure of a symmetric relation is still symmetric;

which are both clear. =

PROOF 3.4.6 » PROOF OF CONSTRUCTION 3.4.5

Let R be a relation on A.

1. Adjointness. We have an adjunction

(-)=
((5)947%): Rel(A4,B)_ +  Rel*(4B),
K;/

oy

witnessed by a bijection of sets
Rel*d(~, ~s) = Rel(~p, ~s),

natural in ~g € Obj(Rel®*9(4, B)) and ~g € Obj(Rel(A, B)).

2. The Equivalence Closure of an Equivalence Relation. If R is an equivalence rela-
tion, then R®9 = R.

PROPOSITION 3.4.7 » PROPERTIES OF EQUIVALENCE RELATIONS
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3. Idempotency. We have

(RQQ)Eq = R®4,

PROOF 3.4.8 » PROOF OF PROPOSITION 3.4.7

Item1: Adjointness

This is a rephrasing of the universal property of the equivalence closure of a rela-
tion, stated in Definition 3.4.4.

Item 2: The Equivalence Closure of an Equivalence Relation

Clear.

Item 3: Idempotency

This follows from Item 2.

m

3.5 Quotients by Equivalence Relations

3.5.1 Equivalence Classes

Let Abeaset, let R bearelationon A, and leta € A.

DEFINITION 3.5.1 » EQUIVALENCE CLASSES

The equivalence class associated to a is the set [a] defined by'?

def

[a] ={x € X|x ~g a}

={xeX|a~gx}. (since R is symmetric)

"Note that since R is symmetric, we have a € [a].
2Note that since R is transitive and symmetric, if x, y € [a], thenx ~g y.
Asa consequence, if [a] N [b] # @, then [a] = [b].

3.5.2 Quotients of Sets by Equivalence Relations

Let Abe asetand let R be a relation on A.

DEFINITION 3.5.2 » QUOTIENTS OF SETS BY EQUIVALENCE RELATIONS

The quotient of X by R is the set X/~ defined by

def

X/~r={[la] e P(X)|a e X}.
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REMARK 3.5.3 » WHY “EQUIVALENCE” RELATIONS FOR QUOTIENT SETS

The reason we define quotient sets for equivalence relations only is that each
of the properties of being an equivalence relation—reflexivity, symmetry, and
transitivity—ensures that the equivalences classes [a] of X under R are well-
behaved:

- Reflexivity. If R is reflexive, then, foreach a € X, we havea € [a].

- Symmetry. The equivalence class [a] of an element a of X is defined by

def

[a] ={x € X|x ~g a},

but we could equally well define

s def

[a]" = {x € X|a ~g x}

instead. This is not a problem when R is symmetric, as we then have [a] =
[a]”

- Transitivity. If R is transitive, then [a] and [b] are disjointiffa ~g b, and
equal otherwise.

"When categorifying equivalence relations, one finds that [a] and [a]’ correspond to presheaves
and copresheaves; see Constructions With Categories, Definition11.1.1.

PROPOSITION 3.5.4 » PROPERTIES OF QUOTIENT SETS

Letf: X — Y beafunctionand let R be a relation on X.

1. The First Isomorphism Theorem for Sets. We have an isomorphism of sets’->
X/ ~ker(r) = Im(f).

2. Descending Functions to Quotient Sets, I. Let R be an equivalence relation on
X. The following conditions are equivalent:

(@) There exists a map

f:X/~r—>Y
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making the diagram

I

X/~r
commute.
(b) Foreachx,y € X,ifx ~g y,thenf(x) =f(p).

3. Descending Functions to Quotient Sets, I1. Let R be an equivalence relation on
X. If the conditions of Item 2 hold, then f is the unique map making the

diagram
x— -y
/7'
q EI!//
e
7
7
X/~r
commute.

4. Descending Functions to Quotient Sets, Ill. Let R be an equivalence relation
on X. If the conditions of Item 2 hold, then the following conditions are
equivalent:

(@) The mapf is an injection.
(b) Foreachx,y € X,wehavex ~g yifff(x) =f(y).

5. Descending Functions to Quotient Sets, IV. Let R be an equivalence relation
on X. If the conditions of Item 2 hold, then the following conditions are
equivalent:

(@) Themapf: X — Yissurjective.
(b) The mapy_‘: X/~r — Yissurjective.
6. Descending Functions to Quotient Sets, V. Let R be a relation on X and let ~;q

be the equivalence relation associated to R. The following conditions are
equivalent:

(@) The mapf satisfies the equivalent conditions of Item 2:
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- There exists a map
fr X/~ >Y
making the diagram

f

X —Y

3

X/~

commute.
- Foreachx,y € X,ifx ~3} y, thenf(x) = f(»).
(b) Foreachx,y € X,ifx ~g y,thenf(x) =f(y).

"Further Terminology: The set X/ ~yer(r) is often called the coimage of f, and denoted by Coim (f).
ZInasense thisisa resultrelating the monad in Rel induced by f with the comonad in Relinduced

by f:
(@) ThekernelKer(f): X 4> X of f is the induced monad of the adjunction T'(f) - F(f)f: X=
YinRel;

(b) Theimagelm(f) c Y off is the induced comonad of the adjunction T'(f) 4 I“(f)T: X2y
in Rel.

PROOF 3.5.5 » PROOF OF PROPOSITION 3.5.4

Item 1: The First Isomorphism Theorem for Sets

Clear.

Item 2: Descending Functions to Quotient Sets, |

See [Pro23c].

Item 3: Descending Functions to Quotient Sets, I

See [Pro23d].

Item 4: Descending Functions to Quotient Sets, Il
See [Pro23a].

Item 5: Descending Functions to Quotient Sets, IV

See [Pro23b].

Item 6: Descending Functions to Quotient Sets, V
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The implication Item (a) = Item (b) is clear.

Conversely, suppose that, foreach x, y € X, ifx ~g y,thenf(x) = f(y).
Spelling out the definition of the equivalence closure of R, we see that the condi-
tion x ~%! y unwinds to the following:

(x) There exist (x1,...,x,) € R*" satisfying at least one of the following
conditions:
1. The following conditions are satisfied:
(@) Wehavex ~g xjo0rx; ~g x;
(b) We have x; ~g x4 Orxjy; ~g x;foreachl <i<n-1;
() Wehave y ~g x,0rx, ~g ¥;

2. Wehavex = y.

Now, if x = y,thenf(x) = f(y) trivially; otherwise, we have

f(x) =f(x1),
f(x1) = f(x2),

f(xn-1) =1 (xn),
f(xn) =f(¥),

andf(x) = f(y), as we wanted to show. |

4 Functoriality of Powersets

4.1 DirectImages

Let Aand BbesetsandletR: A b Bbearelation.

DEFINITION 4.1.1 » DIRECT IMAGES

The direct image function associated to R is the function’
R.: P(A) - P(B)
defined by*-3

def

R.(U) =R(U)
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o U R(a)

acU

={beB

"Further Notation: Also written 3z : P(A) — P(B). This notation comes from the fact that the
following statements are equivalent, whereb € BandU € P (A):

- Wehaveb € 3x(U).

there exists some a €
U suchthatb € R(a)

foreachU € P(A).

- Thereexistssomea € U suchthatb € f(a).

2Further Terminology: The set R(U) is called the directimage of U by R.
3We also have
R«(U) = B\ Ri(A\U);

see Item 7 of Proposition 4.1.3.

Identifying subsets of A with relations from pt to A via Constructions With Sets,
Item 7 of Proposition 3.2.3, we see that the direct image function associated to R
is equivalently the function

R.: P(A) — P(B)

—— ——
=Rel(pt,A) =Rel(pt,B)
defined by
R(U)ERoU

foreachU € P(A), where R ¢ U is the composition

U R
pt—+> A—> B.

REMARK 4.1.2 » UNWINDING DEFINITION 4.1.1

LetR: A - Bbearelation.

1. Functoriality. The assignment U — R, (U) defines a functor
R.: (P(A),c) — (P(B), Q)

where

PROPOSITION 4.1.3 » PROPERTIES OF DIRECT IMAGE FUNCTIONS
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- Action on Objects. Foreach U € P(A), we have
[R.](U) = R.(U);
- Action on Morphisms. Foreach U,V € P(A):
- IfU c V,thenR.(U) C R.(V).
2. Adjointness. We have an adjunction

R.
(R. 4 R_y): P(A)S P(B),
R

witnessed by a bijections of sets
Homp(4)(R«(U),V) = Homp4) (U, R-1(V)),
naturalinU € P(A) andV € P(B), i.e.such that:

(x) The following conditions are equivalent:
(@) WehaveR,.(U) C V;
(b) WehaveU c R_{(V).

3. Preservation of Colimits. We have an equality of sets

Ju|=Jrwy,

iel iel

R,

natural in {U; };¢; € P(A)*!. In particular, we have equalities
R.(U)UR.(V)=R.(UUYV),
R.(9) =0,
natural inU,V € P(A).
4. Oplax Preservation of Limits. We have an inclusion of sets

N

iel

R, c [’-W }{*(IJ}),

iel

natural in {Ui};cs € P(A)L. In particular, we have inclusions

R (UNV) c R.(U) NR(V),
R.(A) C B,
natural inU,V € P(A).




Direct Images

5. Symmetric Strict Monoidality With Respect to Unions. The direct image func-
tion of Item 1 has a symmetric strict monoidal structure

(R RE, RS, ): (P(4),U,0) - (P(B), U, ),
being equipped with equalities
RS,y R(U) URL(V) SR(UUY),
RE,: 00,
natural inU,V € P(A).

6. Symmetric Oplax Monoidality With Respect to Intersections. The direct image
function of Item 1 has a symmetric oplax monoidal structure

(R, RS, RS, ): (P(4),0,4) > (P(B),N, B),

being equipped with inclusions

Riyy: R(UNV) c R(U) NR(V),
Rﬁm: R*(A) c BJ

natural inU,V € P(A).
7. Relation to Direct Images With Compact Support. We have
R.(U) =B\ R(A\U)

foreachU € P(A).

PROOF 4.1.4 » PROOF OF PROPOSITION 4.1.3

Item 1: Functoriality

Q |
o
QL
-

Item 2: Adjointness
This follows from Kan Extensions, Item 2 of Proposition 1.1.6.

Item 3: Preservation of Colimits
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This follows from 22 and Categories, ?? of Proposition 6.1.3.

Item 4: Oplax Preservation of Limits

Omitted.

Item 5: Symmetric Strict Monoidality With Respect to Unions

This follows from Item 3.

Item 6: Symmetric Oplax Monoidality With Respect to Intersections

This follows from 22.

Item 7: Relation to Direct Images With Compact Support
The proof proceeds in the same way as in the case of functions (Constructions
With Sets, Item 7 of Proposition 3.3.3): applying Item 7 of Proposition 4.4.3 to
A\ U, we have
Ri(A\U) =B\ R.(A\ (A\U))
=B\ R.(U).

Taking complements, we then obtain

R.(U) = B\ (B\ R.(U)),
=B\ R(A\D),

m

which finishes the proof.

PROPOSITION 4.1.5 » PROPERTIES OF THE DIRECT IMAGE FUNCTION OPERATION

LetR: A - Bbearelation.

1. Functionality |. The assignment R — R, defines a function

(-).: Rel(A, B) — Sets(P(A), P(B)).
2. Functionality Il. The assignment R — R. defines a function
(=).: Rel(A, B) — Pos((P(A),C), (P(B),C)).
3. Interaction With Identities. For each A € Obj(Sets), we have'

(xa). = idp(a);
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4. Interaction With Composition. For each pairof composable relationsR: A +
BandS: B b C, we have?

P(4) > P(B)

(SoR), =S, oR,, \ ‘s*
(SoR).

P(C).

'That is, the postcomposition
(xa).: Rel(pt,A) — Rel(pt,A)

is equal to idge|(pt,4) -
2That s, we have

Rel(pt, A) =5 Rel(pt, B)

(SoR),=8.0R,, \ |s*
(SoR)«

Rel(pt, C).

Item 1: Functionality |

Clear.
Item 2: Functionality Il

Clear.
Item 3: Interaction With Identities

Indeed, we have

(). () £ xa(a)

acU

Ut

acU
=U

def

= idp(4)(U)

foreachU € P(A). Thus (ya), = idp(a).

Item 4: Interaction With Composition

PROOF 4.1.6 » PROOF OF PROPOSITION 4.1.5
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Indeed, we have

(SR E[ JISeR(@

acU

LUsw@)

acU

2| Js.(r@@)

acU

- S(U R(a)
acU
=5, (R.(U))

def

= [S. o R.](U)

foreach U € P(A), where we used Item 3 of Proposition 4.1.3. Thus (S ¢ R), =
S. o R,. =

4.2 Strong Inverse Images

Let Aand BbesetsandletR: A b Bbearelation.

DEFINITION 4.2.1 » STRONG INVERSE IMAGES

The strong inverse image function associated to R is the function
R_1: P(B) » P(A)

defined by’
def

R_1(V)={ae€ A|R(a) C V}
foreachV € P(B).

" Further Terminology: The set R_ (V') is called the strong inverse image of V by R.

REMARK 4.2.2 » UNWINDING DEFINITION 4.2.1

Identifying subsets of B with relations from pt to B via Constructions With Sets,
Item 7 of Proposition 3.2.3, we see that the inverse image function associated to
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Ris equivalently the function
R_1: P(B) — P(A)

—— ——

=Rel(pt,B) =Rel(pt,A)

defined by
A
. Riftr (V) 7

RO ERif(v), / ‘
pt —— B,

1%

and being explicitly computed by
def

R_1 (V) = Riftr(V)

= / Hom{t,f} (Rf],sz).
X€B

Thus, we have

R;(V)={aeA / Homyq (RS, Vy) = true}
x€B

foreach x € B, atleast one of the follow-
ing conditions hold:

1. We have R} = false;
=194€ A4 5 Thefollowing conditions hold:
(@) Wehave R} = true;

(b) We have V] = true;

foreach x € B, atleast one of the follow-
ing conditions hold:

1. We havex ¢ R(a);
=12€4 2. The following conditions hold:

(@) We have x € R(a);

(b) We havex € V;
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={a € A|foreachx € R(a), we havex € V}
={a€ A|R(a) CV}.

PROPOSITION 4.2.3 » PROPERTIES OF STRONG INVERSE IMAGES

LetR: A - Bbearelation.

1. Functoriality. The assignmentV +— R_; (V') defines a functor
R-y: (P(B),C) — (P(4),0)
where

- Action on Objects. Foreach V € P(B), we have

def

[R-1]1(V) =R (V);
- Action on Morphisms. Foreach U,V € P(B):
- IfU c V,thenR_1(U) c R_{(V).
2. Adjointness. We have an adjunction

R.
(R. 4R P(A)_+  P(B),
R_;

witnessed by a bijections of sets
Homp(4)(R«(U), V) = Homp4) (U, R-1(V)),
naturalinU € P(A) andV € P(B), i.e.such that:

(x) The following conditions are equivalent:
(@) WehaveR,(U) CV;
(b) WehaveU c R_{(V).

3. Lax Preservation of Colimits. We have an inclusion of sets

o)

iel

Ry c Ry

iel
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natural in {U; };¢; € P(B)*!. In particular, we have inclusions

R_1(U)UR_1(V) c R4 (U UY),
@ C R_1(D),

natural inU,V € P(B).

. Preservation of Limits. We have an equality of sets

(Ui = [ R-1 00,

i€l i€l

R_4

natural in {U; };c; € P(B)*!. In particular, we have equalities

R (UNV)=R_1(U)NR_1(V),
R-1(B) =B,

natural inU,V € P(B).

. Symmetric Lax Monoidality With Respect to Unions. The direct image with
compact support function of [tem 1 has a symmetric lax monoidal structure

(R R®), RS, ) (P(4),L,0) - (P(B),U0),
being equipped with inclusions

R R_{(U)UR_{(V) Cc R.{(UUV),

R?””‘: Q) - R—](Q)),

naturalinU,V € P(B).

® .
A

. Symmetric Strict Monoidality With Respect to Intersections. The directimage
function of Item 1 has a symmetric strict monoidal structure

(R-1 R®) R

—1|¥

): (P(a),0,4) > (P(B),N,B)
being equipped with equalities

R R (UNV)SR_{(U)NR_((V),

® 5
STAE
R®,: R_1(4) =B,

naturalinU,V € P(B).




4.2 Strong Inverse Images 72

7. Interaction With Weak Inverse Images. Let R: A 4 B be a relation from A to
B.

(@) IfRisatotal relation, then we have an inclusion of sets
R_{(V) cRY(V)
naturalin V€ P(B). We also have equalities
R7'(B\V) = A\ R (V),
R-1(B\V)=A\R™(V)

foreachV € P(B).

(b) If R is total and functional, then the above inclusion is in fact an
equality.

(c) Conversely, ifwe have R_; = R™!, then R is total and functional.

PROOF 4.2.4 » PROOF OF PROPOSITION 4.2.3

Item 1: Functoriality

Q |
(0]
QO
-

Item 2: Adjointness
This follows from Kan Extensions, Item 2 of Proposition 1.1.6.

Item 3: Lax Preservation of Colimits

Omitted.

Item 4: Preservation of Limits

This follows from Item 2 and Categories, ?? of Proposition 6.1.3.
Item 5: Symmetric Lax Monoidality With Respect to Unions

This follows from 22.

Item 6: Symmetric Strict Monoidality With Respect to Intersections

This follows from Item 4.

Item 7: Interaction With Weak Inverse Images

The first part of 2?is clear, while the second follows by noting that

A\R_(V) ={a € A|R(a) ¢ V},
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RT'(B\V)={acA|R(a)\V # 0},
R_1(B\V)={a€cA|R(a) c B\V},
A\RY(V)={ae€ A|R(@) NV =@}

2222 follow from Item 5 of Proposition 2.1.2. |

PROPOSITION 4.2.5 » PROPERTIES OF THE STRONG INVERSE IMAGE FUNCTION OP-
ERATION

LetR: A - Bbearelation.

1. Functionality |. The assignment R — R_; defines a function
(=)_;: Sets(A, B) — Sets(P(A), P(B)).
2. Functionality . The assignment R +— R_ defines a function
(=)_;: Sets(A, B) — Pos((P(A), c), (P(B), ©)).
3. Interaction With Identities. For each A € Obj(Sets), we have
(ida)_; = idp(a);

4. Interaction With Composition. For each pair of composable relationsR: A -
BandS: B b C, we have

P(C) =5 P(B)

(S <>R)_1 = R—l © S—lr
(SoR)_,

P(A).

PROOF 4.2.6 » PROOF OF PROPOSITION 4.2.5
Item 1: Functionality |

Clear.

Item 2: Functionality Il

Ry
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Clear.

Item 3: Interaction With Identities

Indeed, we have

(x4)_1(U) = {a € A| ya(a) c U}

={ae€ Al{a} c U}
=U

foreachU € P(A). Thus (ya)_; = idp ).

Item 4: Interaction With Composition

Indeed, we have

(SoR)_,(U)E {ac A|[SoR](a) c U}
“{a e A|S(R(a)) c U}

= {a € A|S.(R(a)) C U}

={a € A|R(a) c S_1(U)}

def

= R_1(S-1(0))

= [R-1 o S1](U)

foreach U € P(C), where we used Item 2 of Proposition 4.2.3, which implies
that the conditions

- We have S,.(R(a)) c U;
- We have R(a) c S_{(U);

m

are equivalent. Thus (SoR)_; = R_j o S_;.

4.3 Weak Inverse Images
Let Aand BbesetsandletR: A - B bearelation.

DEFINITION 4.3.1 » WEAK INVERSE IMAGES

The weak inverse image function associated to R’ is the function

R™': P(B) = P(A)
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defined by?
def

R V)E{aeAlR(a) NV £ @}

foreachV € P(B).

" Further Terminology: Also called simply the inverse image function associated to R.
2Further Terminology: The set R™! (V') is called the weak inverse image of V by R or simply the
inverseimage of V by R.

REMARK 4.3.2 » UNWINDING DEFINITION 4.3.1

Identifying subsets of B with relations from B to pt via Constructions With Sets,
Item 7 of Proposition 3.2.3, we see that the weak inverse image function associated
to R is equivalently the function

R™': P(B) — P(A)
N—— N——
=Rel (B,pt) =Rel(A,pt)

defined by
RI'V)EVoR

foreach V € P(A), where R ¢ V is the composition

A—> B> pt.
Explicitly, we have

RV EVeR
o x€B
:/ V! xR’ﬁz,

and thus R=! (V) is the subset of A given by

X€B
RY(V) = {a €A / VIXRY = true}

there exists x € B such that the follow-
ing conditions hold:

Il
Q
m
=

1. We have V¥ = true;

2. We have R} = true;
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there exists x € B such that the follow-
ing conditions hold:

=JacA 1. Wehavex € V;

2. Wehave x € R(a);

= {a € A|thereexists x € Vsuchthatx € R(a)}
={ae€ A|R(a) NV # @}.

PROPOSITION 4.3.3 » PROPERTIES OF WEAK INVERSE IMAGE FUNCTIONS

LetR: A - Bbearelation.

1. Functoriality. The assignment V +— R~ (V) defines a functor
R™': (P(B),C) — (P(A),0)
where
- Action on Objects. Foreach V' € P(B), we have
[R' (V) E R (V);
- Action on Morphisms. Foreach U,V € P(B):
- IfU c V,thenR™'(U) c R"1(V).

2. Adjointness. We have an adjunction

R—l
—

(R" 4 R!): P(B)_+ P(A),
R,

witnessed by a bijections of sets
Homp a) (R_I(U),V) = Homp4) (U, Ry(V)),

naturalinU € P(A) andV € P(B), i.e.such that:

(%) The following conditions are equivalent:
(@) We have R‘l(U) cV;
(b) WehaveU c R(V).
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3. Preservation of Colimits. We have an equality of sets

Ju)=Ur" @,

iel iel

R—l

natural in {U;},c; € P(B)*!. In particular, we have equalities
RYU)URN(V)=R N (UUV),
R =0,
natural inU,V € P(B).
4. Oplax Preservation of Limits. We have an inclusion of sets

ﬂ Ul c ﬂ RN (U,

iel iel

R—]

natural in {U; };c; € P(B)*!. In particular, we have inclusions

RNUNV)c RTYWU)nR V),
R~ '(A) c B,

naturalinU,V € P(B).

5. Symmetric Strict Monoidality With Respect to Unions. The direct image func-
tion of Item 1 has a symmetric strict monoidal structure

(R R, B2 (P(4),U,8) — (P(B),U,B),
being equipped with equalities
Ry : R (U)URT (V) S RN (UUY),
R 050,
naturalinU,V € P(B).

6. Symmetric Oplax Monoidality With Respect to Intersections. The directimage
function of Item 1 has a symmetric oplax monoidal structure

(R‘I,R‘W,R;l'@): (P(A),n, A) — (P(B),N, B,
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being equipped with inclusions
-1®. p-1 -1 =
RV RTN(UNV) c RN U)NRTN(V),
R;"®: R7'(A) C B,
natural inU,V € P(B).

7. Interaction With Strong Inverse Images. Let R: A -b B be arelation from A
to B.

(@) IfRisatotal relation, then we have an inclusion of sets
R_{(V) cRY(V)
naturalin V€ P(B). We also have equalities
RTN(B\ V) =A\R(V),
Ro(B\V)=A\R(V)

foreachV € P(B).

(b) If R is total and functional, then the above inclusion is in fact an
equality.

(c) Conversely, ifwe have R_; = R™!, then R is total and functional.

PROOF 4.3.4 » PROOF OF PROPOSITION 4.3.3

[tem 1: Functoriality

Q |
(0]
QL
-

Item 2: Adjointness
This follows from Kan Extensions, Item 2 of Proposition 1.1.6.

Item 3: Preservation of Colimits

This follows from ?? and Categories, ?? of Proposition 6.1.3.

Item 4: Oplax Preservation of Limits

Omitted.

Item 5: Symmetric Strict Monoidality With Respect to Unions

This follows from Item 3.
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Item 6: Symmetric Oplax Monoidality With Respect to Intersections

This follows from 22.

Item 7: Interaction With Strong Inverse Images

This was proved in Item 7 of Item 7. |

PROPOSITION 4.3.5 » PROPERTIES OF THE WEAK INVERSE IMAGE FUNCTION OPER-
ATION

LetR: A - Bbearelation.

1. Functionality I. The assignment R > R~! defines a function
(=)~': Rel(A, B) — Sets(P(A), P(B)).
2. Functionality II. The assignment R — R~! defines a function
(-)7": Rel(A, B) — Pos((P(A), C), (P(B),C)).
3. Interaction With Identities. For each A € Obj(Sets), we have'
(xa)™" =idp(ay;

4. Interaction With Composition. For each pair of composable relationsR: A -
BandS: B b C, we have?

P(C) 55 P(B)

(SoR)'=R1os™!, !
(SoR)™!

P(A).

'That s, the postcomposition

(74)™': Rel(pt, A) — Rel(pt, A)

is equal to idpe|(pt,4) -
2Thatis, we have

-1
Rel(pt,C) ®5 Rel(pt, B)

(SeR)'=R1os™l )
(SoR)™!

Rel(pt, A).
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PROOF 4.3.6 » PROOF OF PROPOSITION 4.3.5

Item 1: Functionality |

Q |
o
QL
-

Item 2: Functionality Il
Clear.
Item 3: Interaction With Identities

This follows from Categories, Item 5 of Proposition 1.4.3.

Item 4: Interaction With Composition

m

This follows from Categories, Item 2 of Proposition 1.4.3.

4.4 Direct Images With Compact Support
Let Aand BbesetsandletR: A - Bbearelation.

DEFINITION 4.4.1 » DIRECT IMAGES WITH COMPACT SUPPORT

The directimage with compact support function associated to R is the function’
Ry: P(A) — P(B)
defined by

def

R!(U)={heB

foreacha € A, if we have
b€ R(a),thenae U

={be B|R'(b) c U}

foreachU € P(A).

"Further Notation: Also written Vg : P(A) — P(B). This notation comes from the fact that the
following statements are equivalent,whereb € BandU € P(A):

- Wehaveb € VR (U).
- Foreacha € A,ifb € R(a),thena € U.

2Further Terminology: The set R, (U) is called the direct image with compact support of U by R.
3We also have
Ri(U) =B\ R.(A\U);

see Item 7 of Proposition 4.4.3.
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REMARK 4.4.2 » UNWINDING DEFINITION 4.4.1

Identifying subsets of B with relations from pt to B via Constructions With Sets,
Item 7 of Proposition 3.2.3, we see that the direct image with compact support
function associated to R is equivalently the function

R: P(A) — P(B)

N—— N——
=Rel(A,pt) =Rel(B,pt)
defined by
B
def R :
R;(U) = Rang(U), /7-:- Rang (U)

Y

A _|_) pty
U

being explicitly computed by

def

R*(U) = Rang(U)
= / Hom ) (Ru_z, Uu_l).
acA

Thus, we have

R™\(U) = {b B / Homizg (RZ, Ua*) - true}
ae
foreacha € A, atleast one of the follow-
ing conditions hold:
1. We have R} = false;

=1beB 2. The following conditions hold:

(@) Wehave R? = true;
(b) We have U} = true;
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foreacha € A, atleast one of the follow-
ing conditions hold:

1. Wehaveb ¢ R(a);
=\P€Bl 5 The following conditions hold:

(@) Wehaveb € R(a);
(b) We havea € U,

={b e B|foreacha € A,ifb € R(a),thena e U.}
={beB|R'(b) cU}.

PROPOSITION 4.4.3 » PROPERTIES OF DIRECT IMAGES WITH COMPACT SUPPORT

LetR: A - Bbearelation.

1. Functoriality. The assignment U +— R,(U) defines a functor
Ri: (P(A),c) — (P(B), <)

where

- Action on Objects. Foreach U € P(A), we have
[R](U) € R(U);
- Action on Morphisms. Foreach U,V € P(A):
- IfU c V,thenR\(U) c R((V).

2. Adjointness. We have an adjunction
R—]
(R‘l 4 R!): PB) 1 P(A),
—
R
witnessed by a bijections of sets

Homp (a) (R_](U),V) = Homp4) (U, Ry(V)),

naturalinU € P(A) andV € P(B), i.e.such that:
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(x) The following conditions are equivalent:
(@) WehaveR"1(U) c V;
(b) WehaveU c R((V).

3. Lax Preservation of Colimits. We have an inclusion of sets

| Jruv) e R,

iel

Jv)

iel
natural in {U;};¢s € P(A). In particular, we have inclusions

Ry(U)UR((V) cR(UUYV),
@ C R(D),

natural inU,V € P(A).

. Preservation of Limits. We have an equality of sets

ﬂ Uil = m Ry (U)),

iel iel

R

natural in {U; };c; € P(A)*!. In particular, we have equalities

R(UNV)=R(U)NR(V),
Ri(A) =B,

natural inU,V € P(A).

. Symmetric Lax Monoidality With Respect to Unions. The direct image with
compact support function of ltem 1 has a symmetric lax monoidal structure

(Ru RS, RS, ): (P(4),U,8) - (P(B),U,0),

being equipped with inclusions

RE, v Ri(U) UR(V) € Ry(UUY),
RE,: @ c R(®),

natural inU,V € P(A).
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6. Symmetric Strict Monoidality With Respect to Intersections. The directimage
function of ltem 1 has a symmetric strict monoidal structure

(R RS, RS, ): (P(4),0,4) = (P(B),N, B),
being equipped with equalities
RY, v R(UNY) S R(U)NR(V),
RY,: Ri(A) 5B,
natural inU,V € P(A).
7. Relation to Direct Images. We have
Ry(U) =B\ R.(A\ V)

foreachU € P(A).

PROOF 4.4.4 » PROOF OF PROPOSITION 4.4.3
[tem 1: Functoriality
Item 2: Adjointness

This follows from Kan Extensions, Item 2 of Proposition 1.1.6.

Item 3: Lax Preservation of Colimits

Omitted.
Item 4: Preservation of Limits

This follows from Item 2 and Categories, ?? of Proposition 6.1.3.

Item 5: Symmetric Lax Monoidality With Respect to Unions

This follows from 22.

Item 6: Symmetric Strict Monoidality With Respect to Intersections

This follows from Item 4.
Item 7: Relation to Direct Images

As with Item 7 of Proposition 4.1.3, the proof proceeds in the same way as in the
case of functions (Constructions With Sets, Item 7 of Proposition 3.5.5): We claim

Q |
o
QL
bl
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thatRj(U) = B\ R.(A\ U).
- The First Implication. We claim that
R\(U) c B\ R.(A\U).

Letb € R|(U). We need to show thatb ¢ R.(A\ U), i.e. thatthereisno
a € A\ Usuchthatb € R(a).

This is indeed the case, as otherwise we would havea € R~ (b) anda ¢ U,
contradicting R~! (b) € U (which holdssince b € R,(U)).

Thusb € B\ R.(A\ U).
- The Second Implication. We claim that
B\ R.(A\U) c Ri(U).

Leth € B\R.(A\ U). Weneedtoshowthath € R (U),ie.thatR™!(b) C
U.

Sinceb ¢ R.(A\ U), thereexistsnoa € A\ Usuchthatb € R(a),and
hence R~'(b) c U.

Thusb € RI(U)
This finishes the proof. |

PROPOSITION 4.4.5 » PROPERTIES OF THE DIRECT IMAGE WITH COMPACT SUPPORT
FUNCTION OPERATION

LetR: A - Bbearelation.

1. Functionality . The assignment R + R, defines a function

(=),: Sets(A, B) — Sets(P(A), P(B)).
2. Functionality Il. The assignment R — R, defines a function
(=),: Sets(A, B) — Hompos((P(A), ), (P(B), ©)).
3. Interaction With Identities. For each A € Obj(Sets), we have

(ida), = idp(a);
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4. Interaction With Composition. For each pair of composable relationsR: A -
BandS: B -+ C,we have

P(4) 2> P(B)

(S(}R)!zs!OR!, \ ‘S!
(SoR),

P(C).

PROOF 4.4.6 » PROOF OF PROPOSITION 4.4.5

Item 1: Functionality |

Clear.

Item 2: Functionality Il

Clear.
Item 3: Interaction With Identities

Indeed, we have

(2 (U) £ {a € Al z3'(a) c U}
“{aeAl{a} cU}
=U
foreachU € P(A). Thus (ya), = idp(a).

Item 4: Interaction With Composition

Indeed, we have

def

(SoR),(U)={ceC|[SoR]"(c) cU}
< {c € C|S_1(R_1(c)) c U}
={ceC|R ' (c) c $i(U)}

def

= Ri(S1(U))

= [Ry o §](V)

foreach U € P(C), where we used Item 2 of Proposition 4.4.3, which implies
that the conditions

- We have S~ (R71(¢)) c U;




4.5 Functoriality of Powersets

87

- Wehave R™!(¢) c $1(U);

are equivalent. Thus (So R), = Sy o R).

4.5 Functoriality of Powersets

PROPOSITION 4.5.1 » FUNCTORIALITY OF POWERSETS |

The assignment X +— P(X) defines functors’
P.: Rel — Sets,
P_1: Rel°® — Sets,
P~L: Rel°P — Sets,
Pr: Rel — Sets
where

- Action on Objects. For each A € Obj(Rel), we have

def

P.(A) = P(A),
P_1(A) EP(4A),
PHA) EP(A),

Pi(A) ZP(A);

- Action on Morphisms. For each morphism R: A - B of Rel, the images
P.(R): P(A) — P(B),
P-1(R): P(B) — P(A),
P (R): P(B) > P(A),
Pi(R): P(A) — P(B)
of Rby P,, P_;, P~!, and P, are defined by

def

P.(R) =R,
P_1(R) SRy,
PHR)ERT,

P(R) =R,

asin Definitions 4.1.1,4.2.1,4.3.1and 4.4.1.

"The functor P, : Rel — Sets admits a left adjoint; see Item 3 of Proposition 2.1.2.
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PROOF 4.5.2 » PROOF OF PROPOSITION 4.5.1

This follows from Items 3 and 4 of Proposition 4.1.5, Items 3 and 4 of Proposi-
tion 4.2.5, ltems 3 and 4 of Proposition 4.3.5, and Items 3 and 4 of Proposition 4.4.5.
|

4.6 Functoriality of Powersets: Relations on Powersets

Let Aand BbesetsandletR: A b Bbearelation.

DEFINITION 4.6.1 » THE RELATION ON POWERSETS ASSOCIATED TO A RELATION
The relation on powersets associated to R is the relation

P(R): P(A) b P(B)
defined by’

V def

P(R); =Rel(yp, VoRoU)
foreachU € P(A)andeachV € P(B).

"llustration:

pt =—+—> A —+— B —+ pt.
U R 4

REMARK 4.6.2 » UNWINDING DEFINITION 4.6.1

In detail, we have U ~p(g) Viff:

- Wehave yp € VoRoU,ie iff:

- We have (V o Ro U)} = true, ie.iff we have
acA beB
/ / V¥ X Rl x U2 = true,

- There exists somea € Aandsome b € Bsuch that:

i.e. iff:

- We have U§ = true;
- We have R = true;

- We have Vb* = true;
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i.e.iff:
- There exists somea € Aandsomeb € Bsuch that:

- We havea € U;
- We havea ~g b;
- Wehaveb e V.

PROPOSITION 4.6.3 » FUNCTORIALITY OF POWERSETS ||

The assignment R — P(R) defines a functor

P: Rel — Rel.

PROOF 4.6.4 » PROOF OF PROPOSITION 4.6.3

Omitted. =

5 Spans

5.1 Foundations

Let A and B be sets.

DEFINITION 5.1.1 » SPANS

Aspanfrom Ato B' is a functor F: A — Sets such that

F([-1D) = A,
F([1]) =B

"Further Terminology: Also called a roof from A to B or a correspondence from A to B.

REMARK 5.1.2 » UNWINDING DEFINITION 5.1.1
In detail, a span from Ato Bis a triple (S, f, g) consisting of -2
- The Underlying Set. Aset S, called the underlying setof (S, f, 2);

- The Legs. A pair of functionsf: S — Aandg: S — B.
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"Picture:
S
/N
A B.

2We may think of a span (S, f, g) from A to B as a multivalued map from A to B, sending an
elementa € Atothe setg(f‘1 (a)) of elements of B.

DEFINITION 5.1.3 » MORPHISMS OF SPANS

A morphism of spans (R,f1,41) to (S,f2,42)" is a natural transformation
(R, flrgl) == (S! f27g2)~

" Further Terminology: Also called a morphism of roofs from (R, f1, g1) to (S, f2, g2) ora morphism
of correspondences from (R, f1,g1) to (S, 12, 82)-

REMARK 5.1.4 » UNWINDING DEFINITION 5.1.3

In detail, a morphism of spans from (R, f1, g1) to (S, f2, g2) is a function ¢: R —
S making the diagram’

/N /S\
— A0

commute.

1 Alternative Picture:

A B.

VN
NV
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DEFINITION 5.1.5 » THE CATEGORY OF SPANS FROM A TO B

The category of spans from A to B is the category Span (A, B) defined by

S A, B) € Fun(A, Set X t X Fun(A, Sets),
pan( ) un( € S) evi_i),Sets,[A] P [B],Setsev( un( € S)

as in the diagram
Span(A, B)

v

N
/

Fun (A, Sets) >< pt pt >< Fun(/\,Sets)

e TN\

Fun(A Sets) Fun(A Sets).

N S

Sets Sets

REMARK 5.1.6 » UNWINDING DEFINITION 5.1.5

In detail, the category of spans from A to B is the category Span(A, B) where

NP4
/\

- Objects. The objects of Span(A, B) are spans from A to B;
- Morphisms. The morphism of Span(A, B) are morphisms of spans;

- Identities. The unit map

Span(A,B) .

¥isrg ° Pt— Homspan, ap)((S,f,2), (5,1, 8))

of Span(A4, B) at (S, f, g) is defined by

Span(A,B) def ety
ids re) ids:

- Composition. The composition map
S AB
Rpsa;( s HomSpanc(AB) (§,T) x HomSpanC(AB) (R,S) — HomSpanc(AB) (R,T)

OfSpan(A, B) at ((R: fl! gl)! (S: f2; g2), (T, f3, g3)) is defined by

S AB def
vorsr 9 od.
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| SN
AJ/ \\B f// \\g

DEFINITION 5.1.7 » THE BICATEGORY OF SPANS

The bicategory of spansin C is the bicategory Span where
- Objects. The objects of Span are sets;

- Hom-Categories. For each A, B € Obj(Span), we have
Homspan (4, B) < Span(4, B);
- Identities. For each A € Obj(Span), the unit functor

Span |
¥ pt — Span(4, A)

of Span at A is the functor picking the span (A, id 4, ida):

A
id/ YA
A A
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- Composition. The composition bifunctor

Oiﬁigi Span(B, C) x Span(A, B) — Span(A,C)
of Span at (4, B, C) is the bifunctor where

- Action on Objects. The composition of two spans

R S
V & and 7 \gz
A B A B

inCisthespan (R X S,f] o pry, g2 © pr,), constructed as in the di-
agram

g20pr

- Action on Morphisms. The horizontal composition of 2-morphisms is
defined via functoriality of pullbacks: given morphisms of spans

VI LI

an B v C,

NP N A

Rl Sl

S
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their horizontal composition is the morphism of spans

RXBS

forn /1 \_kopn
|
|

A Ell C,
1
|
|

h’opr’1 y k’Opr’2

R’ xg 8’

constructed as in the diagram

- Associators and Unitors. The associator and unitors are defined using the
universal property of the pullback.

DEFINITION 5.1.8 » THE DOUBLE CATEGORY OF SPANS

The double category of spans is the double category Spa n where

. Objects. The objects of Span™®' are sets;
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- Vertical Morphisms. The vertical morphisms of Spandbl are functions
f: A— B;

- Horizontal Morphisms. The horizontal morphisms ofSpandbl are spans

Sov):APX
- 2-Morphisms. A 2-cell

R
N
¢r B
N
A Y
tothe span
AXxx S
A S
AN 7 g
J f s Y
N v
X X Y;

- Horizontal Identities. The horizontal unit functor

M‘Spandb': (Spandbl)o R (Spandbl)l

of Span?® is the functor where
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- Action on Objects. Foreach A € Obj((Spandb')O), we have

¥aE (A idy, ida),

asinthe diagram

7N,

- Action on Morphisms. For each vertical morphism f: A — B of

Spandb', i.e. each map of sets f from Ato B, the identity 2-morphism

¥a

A—F— A
B

of f is the morphism of spans from

—~
-

I
L
4
—t

¥p

o]

ida

A

\'A
Af
N

AXB B
A B
Y )
/ \f idp w
N v
B B B

given by the isomorphism A SA Xp B;
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- Vertical Identities. Foreach A € Obj(Spandb'),we have

. ,Spandb! def .
id3P" = ida;

- Identity 2-Morphisms. For each horizontal morphism R: A - B of Span®®',

the identity 2-morphism

S
——

A B
|
IdA‘ idg idp
A B

—t
S

of R is the morphism of spans from

to
AXaS

A S
i AN /
N ¢

A A B

given by the isomorphism S ZA XA S;

- Horizontal Composition. The horizontal composition functor

Span®! ( dbl)
0] : (Span lx(span

o s5%), = (o),

of Spa n9!is the functor where
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- Action on Objects. For each composable pair
(R¢rWR)  (Sids,¥s)
& B b

of horizontal morphisms ofSpandbl, we have

(S, ¢5,¥5) © (R, $r, wr) =S 5P R,

where S ingg R is the composition of (R, ¢g, ¥gr) and (S, ¢s, ¥s)

defined as in Definition 5.1.7;

- Action on Morphisms. For each horizontally composable pair

(Rv¢Rvu/R) (sl¢SrWS)
A—+— B B——C
|
f U |g g| B h
{ y
(To¢r,y1) Uguyu)

of 2-morphisms ofSpande, [.];

F _G
- Vertical Composition of 1-Morphisms. For each composable pair A—B—C
of vertical morphisms ofSpandbl, i.e. maps of sets, we have

g oS fEgof;

- Vertical Composition of 2-Morphisms. For each vertically composable pair

<R1¢R:WR) (S’¢S:V/5)
A—F— X B—4—Y
|
f| | | | L
| U
B——Y C —— Z
(S.¢s,¥s) (T.¢rvr)

of 2-morphisms ofSpande, [.];

- Associators and Unitors. The associator and unitors ofSpandbl are defined
using the universal property of the pullback.

5.2 Comparison to Functions
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PROPOSITION 5.2.1 » COMPARISON OF SPANS TO FUNCTIONS

We have a pseudofunctor
12 Setspidisc — Span
from Setsp;disc to Span where
- Action on Objects. For each A € Obj(Setspdisc), we have

1(A) £ A;

- Action on Hom-Categories. For each A, B € Obj(Setspgisc), the action on
Hom-categories

tap: Sets(A, B)gisc — Span(A4, B)

of 1at (A, B) isthe functor defined on objects by sendinga functionf: A —

B to the span
A
VAR
A B
from A to B.
PROOF 5.2.2 » PROOF OF PROPOSITION 5.2.1
Clear. =

5.3 Comparison to Relations

PROPOSITION 5.3.1 » COMPARISON OF SPANS TO RELATIONS |

We have a pseudofunctor
t: Span — Rel

from Span to Rel where

- Action on Objects. For each A € Obj(Span), we have

def

1(A) = A,
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- Action on Hom-Categories. For each A, B € Obj(Span), the action on Hom-
categories
tap: Span(4A, B) — Rel(A, B)

of tat (A, B) is the functor where

- Action on Objects. Given a span

RN
A B

from A to B, we define a relation
14B(S): A B

from A to B as follows:

- Viewingrelations as functions AX B — {true, false}, we define

. def | true ifthereexists x € Ssuchthata = f(x) and b = g(x),
14B(S)y =

false otherwise

foreach (a,b) € AX B;
- Viewing relations as functions A — P(B), we define

()] (@) g(f ' (@)

foreacha € A;
- Viewing relations as subsets of A X B, we define

a(S) E {(f(x), g(x)) | x € S}.

- Action on Morphisms. Given a morphism of spans

; R

RN
A ¢ B
N

S

’
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we have a corresponding inclusion of relations

tA5(@): tas(R) C 1ap(S),

sincewe have a ~,, ; (r) biff thereexists x € Rsuchthata = fr(x)
and b = gr(x), in which case we then have

a = fr(x)
=fs(¢(x)),
b= gr(x)
= gs(¢(x)),

sothata ~148(S) b, and thus IA‘B(R) @ LA’B(S).

PROOF 5.3.2 » PROOF OF PROPOSITION 5.3.1

Omitted. =

PROPOSITION 5.3.3 » COMPARISON OF SPANS TO RELATIONS ||

We have a lax functor

(t, 2, zo): Rel — Span
from Rel to Span where

- Action on Objects. For each A € Obj(Span), we have

& 4,

1(A) = A,

- Action on Hom-Categories. For each A, B € Obj(Span), the action on Hom-
categories
1ap: Rel(A B) — Span(A, B)

of 1at (A, B) is the functor where

- Action on Objects. Given a relation R: A - B from A to B, we define
aspan
14p(R): A+ B

from Ato B by

tas(R) E (R, pry [z o2 Ip),
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where R € A x Band pr; |z and pr, | are the restriction of the
projections

pri: AXB — A,
pr,: AXB— B

toR;

- Action on Morphisms. Given an inclusion ¢: R C S of relations, we
have a corresponding morphism of spans

t48(¢): 1aB(R) — 14(S)

asinthe diagram

pry | 5 pry |
SN

A B.

pri |:\ S /;Q |s

- The Lax Functoriality Constraints. The lax functoriality constraint
frs: 1(S) o t(R) => 1(So R)

of tat (R, S) is given by the morphism of spans from

RXBS
7 o\
pri g opry
/
R
pr2|R
A B
to
SoR

Pri |s°7 YZ |S<>R
A C
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given by the natural inclusion R Xg S < § ¢ R, since we have

R xp S ={((ag,br), (bs,cs)) € RXS|bg = bs};

>

SoR:{(a,c)eAXC

there exists some b € B such
that (¢, b) € Rand (b,¢c) €S

- The Lax Unity Constraints. The lax unity constraint’

tg: id,(A) == l(}{A)
—— ——
(Ajida,idy)

(AA’prl ‘AA,prz ’AA)

of tat Ais given by the diagonal morphism of A, as in the diagram

R
N

Py |A Ay pra |AA

A

A

"Which is in fact strong, as d 4 is an isomorphism.

Omitted.

PROOF 5.3.4 » PROOF OF PROPOSITION 5.3.1

B

b=g(s) =g(s").

indeed, if instead of considering relations from A to B, i.e. functions
R: A X B — {true, false}
from A x Bto {true, false} = {0, 1}, we consider functions

R: AXB — NU {co}

REMARK 5.3.5 » INTERACTION WITH MULTIRELATIONS

The pseudofunctor of Proposition 5.3.1 and the lax functor of Proposition 5.3.3
fail to be equivalences of bicategories. This happens essentially because a span
(S,f,8): A b Bfrom Ato B may relate elementsa € Aand b € B by more
than one element, e.g. there could be s # s’ € Ssuchthata = f(s) = f(s") and

Thus, in a sense, spans may be thought of as “relations with multiplicity”. And
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from A X BtoN U {o0}, then we obtain the notion of a multirelation from A to
B, and these turn out to assemble together with sets into a bicategory MRel that
is biequivalent to Span; see [BG03, Propositions 2.5 and 2.6].

REMARK 5.3.6 » INTERACTION WITH DOUBLE CATEGORIES AND ADJOINTNESS

There are double functors between the double categories Rel®?' and Spand'[’I

analogous to the functors of Propositions 5.3.1and 5.3.3, assembling moreover
into a strict-lax adjunction of double functors; see [Graz0, Section 4.5.3].

6 Hyperpointed Sets

6.1 Foundations

DEFINITION 6.1.1 » HYPERPOINTED SETS

A hyperpointed set' is equivalently:
- An Ep-monoid in (N, (Rel), pt);
- A pointed objectin (Rel, pt);

- A pointed objectin (Rel, pt).

" Further Terminology: Also called a multipointed set or an F;-hypermodule.

REMARK 6.1.2 » UNWINDING DEFINITION 6.1.1, |

Viewing relations A & B as functions A X B — {true, false} via Remark1.1.3,
we see that hyperpointed sets may also be described as follows:
A hyperpointed set is a pair (X, x() consisting of

- The Underlying Set. A set X, called the underlying set of (X, x¢);
- The Hyperbasepoint. A morphism
J:ptH X
in Rel from ptto X, i.e. arelation
J: pt x X b {true, false}
from ptto X, called the hyperbasepoint of X.
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REMARK 6.1.3 » UNWINDING DEFINITION 6.1.1, |1

Viewing relations A b B as functions A — P(B) via Remark1.1.3, we see that
hyperpointed sets may also be described as follows:
A hyperpointed set is a pair (X, x() consisting of

- The Underlying Set. A set X, called the underlying set of (X, x¢);

- The Hyperbasepoint. A morphism
[x0]: pt X
in Rel from ptto X, i.e. arelation
[xo]: pt = P(X)

from ptto X, determining a subset x( of X, called the hyperbasepoint of

EXAMPLE 6.1.4 » THE EMPTY HYPERPOINTED SET

|:><

The empty hyperpointed set is the hyperpointed set (@, @) consisting of
- The Underlying Set. The empty set @;

- The Hyperbasepoint. The subset @ of pt.

EXAMPLE 6.1.5 » THE TRIVIAL HYPERPOINTED SET

The trivial hyperpointed set is the hyperpointed set (pt, x) consisting of
- The Underlying Set. The punctual set pt = {x};

- The Hyperbasepoint. The subset {x} of pt.

EXAMPLE 6.1.6 » REPRESENTABLE HYPERPOINTED SETS

The representable hyperpointed set associated to a pointed set (X, x¢) is the
hyperpointed set (X, {xo}) consisting of

- The Underlying Set. The set X;

- The Hyperbasepoint. The subset {xo} of X.
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6.2 Hyperpointed Functions

6.2.1 Lax Hyperpointed Functions

Let (X, xp) and (Y, y9) be hyperpointed sets.

DEFINITION 6.2.1 » LAX HYPERPOINTED FUNCTIONS

Alax hyperpointed function from (X, x¢) to (Y, )" is a pair (f, fo) consisting
of

- The Underlying Function. A functionf: X — Y, called the underlying
function of (f, f°);

- The Hyperbasepoint Preservation Constraint. A natural transformation

pt
fO: [yo] = fi o [xol, [XV%YO]

P(X) —— P(Y),

called the lax hyperbasepoint preservation constraint of (f, fo), i.e.an
inclusion of sets

Yo € f(x0).

"Further Terminology: Also called a lax multipointed function, a lax morphism of hyperpointed
sets, a lax morphism of multipointed sets, or a lax morphism of IF;-hypermodules.

6.2.2 Oplax Hyperpointed Functions

Let (X, xp) and (Y, y9) be hyperpointed sets.

DEFINITION 6.2.2 » OPLAX HYPERPOINTED FUNCTIONS

A oplax hyperpointed function from (X, x¢) to (Y, yo)" is a pair (f, fo) consisting
of

- The Underlying Function. A functionf: X — Y, called the underlying
function of (f, f°);
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- The Hyperbasepoint Preservation Constraint. A natural transformation

pt
fO: [yl = f. o [x0], [xwo]

P(X) —— P(Y),

called the oplax hyperbasepoint preservation constraint of (f, fO), i.e.an
inclusion of sets

f(x0) € yo.

" Further Terminology: Also called a oplax multipointed function, a oplax morphism of hyper-
pointed sets, a oplax morphism of multipointed sets, or a oplax morphism of F;-hypermodules.

6.2.3 Strong Hyperpointed Functions

Let (X, x0) and (Y, yo) be hyperpointed sets.

DEFINITION 6.2.3 » STRONG HYPERPOINTED FUNCTIONS

A strong hyperpointed function from (X, x) to (Y, )" is an op/lax hyper-
pointed function (f, fo) whose hyperbasepoint preservation constraint is an iso-
morphism.

" Further Terminology: Also called simply a hyperpointed function, a strict hyperpointed function,
a strong/strict multipointed function, a strong/strict morphism of hyperpointed sets, a strong/strict
morphism of multipointed sets, or a strong/strict morphism of F{-hypermodules.

REMARK 6.2.4 » UNWINDING DEFINITION 6.2.3

In detail, a strong hyperpointed function from (X, /x) to (Y, Jy) is a function
f: X — Y such that we have an equality of sets

f(x0) = yo.

6.3 Hyperpointed Relations

6.3.1 Lax Hyperpointed Relations
Let (X, Jx) and (Y, Jy) be hyperpointed sets.
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DEFINITION 6.3.1 » LAX HYPERPOINTED RELATIONS

A lax hyperpointed relation’ is a lax morphism of pointed objects in (Rel, pt).

"Further Terminology: Also called a lax hypermorphism of hyperpointed sets, or a lax hypermor-
phism of F; -hypermodules.

REMARK 6.3.2 » UNWINDING DEFINITION 6.3.1, |

Viewing relations A -b B as functions A X B — {true, false} via Remark1.1.3,
we see that lax hyperpointed relations may be described as follows:
Alax hyperpointed relation from (X, /x) to (Y, Jy) isa pair (f, f°) consisting

of
- The Underlying Relation. A relation
f: X XY — {true,false}
from X to Y, called the underlying relation of (f, f°);

- The Hyperbasepoint Preservation Constraint. A natural transformation

pt
£y = fox, ’//f/\\’
X —4+——>Y,
f

called the lax hyperbasepoint preservation constraint of (f, f 0), with com-
ponents

xeX
[°]°: Uyl — / £ % Jxl*

in {true, false}, fora € X.

REMARK 6.3.3 » UNWINDING DEFINITION 6.3.1, |1

Viewing relations A - B as functions A — P(B) via Remark1.1.3, we see that
lax hyperpointed relations may also be described as follows:
Alax hyperpointed relation from (X, x¢) to (Y, o) is a pair (f, fo) consisting

of
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- The Underlying Relation. A relation
f: X XY — {true,false}

from X to Y, called the underlying relation of (f, f°);

- The Hyperbasepoint Preservation Constraint. A natural transformation

pt
[%o] [yol
ﬁwm=wﬂm’x2ﬁ>;m
X_|—)Yy

f

called the lax hyperbasepoint preservation constraint of (f, fo), i.e.an
inclusion of sets
Yo C f(x0),

o< [ Jf.

XEXQ

6.3.2 Oplax Hyperpointed Relations

DEFINITION 6.3.4 » OPLAX HYPERPOINTED RELATIONS

An oplax hyperpointed relation’ is an oplax morphism of pointed objects in
(Rel, pt).

"Further Terminology: Also called an oplax hypermorphism of hyperpointed sets or an oplax
hypermorphism of F{-hypermodules.

REMARK 6.3.5 » UNWINDING DEFINITION 6.3.4, |

Viewing relations A -b B as functions A X B — {true, false} via Remark1.1.3,
we see that oplax hyperpointed relations may be described as follows:

An oplax hyperpointed relation from (X, Jx) to (Y, Jy) is a pair (f, f°) con-
sisting of

- The Underlying Relation. A relation
f: X XY — {true, false}
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from X to Y, called the underlying relation of (f, f°);

- The Hyperbasepoint Preservation Constraint. A natural transformation

pt
Py = fox, ’///,\\]
X —4+— Y,
f

called the oplax hyperbasepoint preservation constraint of (f, fo), with
components

xeX
[f°]“:/ £ x Uxl® = Dy]*

in {true, false}, fora € X.

REMARK 6.3.6 » UNWINDING DEFINITION 6.3.4, ||

Viewing relations A b B as functions A — P(B) via Remark1.1.3, we see that
oplax hyperpointed relations may also be described as follows:

An oplax hyperpointed relation from (X, xo) to (Y, yo) is a pair (f, fo) con-
sisting of

- The Underlying Relation. A relation
f: X XY — {true, false}
from X to Y, called the underlying relation of (f, f°);

- The Hyperbasepoint Preservation Constraint. A natural transformation

pt
[x0] (ol
°: 0] = f o [xol, //f/ ’
X _|—) Y;

f

called the oplax hyperbasepoint preservation constraint of (f, fO), i.e.an
inclusion of sets
f(x0) € yo,
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U f) <0

XEXQ

6.3.3 Strong Hyperpointed Relations

Let (X, x0) and (Y, yo) be hyperpointed sets.

DEFINITION 6.3.7 » STRONG HYPERPOINTED RELATIONS

A strong hyperpointed relation from (X, x¢) to (Y, yo)" is equivalently:
- A morphism of Ey-monoids in (N4 (Rel), pt);
- Amorphism of pointed objects in (Rel, pt);
- Astrong morphism of pointed objects in (Rel, pt);

- Astrict morphism of pointed objects in (Rel, pt).

"Further Terminology: Also called simply a hyperpointed relation, a strict hyperpointed rela-
tion, a strong/strict multipointed relation, a strong/strict hypermorphism of hyperpointed sets,
a strong/strict hypermorphism of multipointed sets, or a strong/strict hypermorphism of F-
hypermodules.

REMARK 6.3.8 » UNWINDING DEFINITION 6.3.7, |

Viewing relations A - B as functions A X B — {true, false} via Remark1.1.3,
we see that strong hyperpointed relations may also be described as follows:

In detail, a strong hyperpointed relation from (X, Jx) to (Y, Jy) is an op/lax
hyperpointed relation (f, fo) whose hyperbasepoint preservation constraint is
an isomorphism.

REMARK 6.3.9 » UNWINDING DEFINITION 6.3.7, |1

Viewing relations A -+ B as functions A — P(X) via Remark1.1.3, we see that
strong hyperpointed relations may also be described as follows:

A strong hyperpointed relation from (X, /x) to (Y, Jy) isarelationf: X -+
Y such that we have an equality of relations

xeX
/ £ x Uxl® = Jr.




6.4 Categories of Hyperpointed Sets 12

REMARK 6.3.10 » UNWINDING DEFINITION 6.3.7, llI

Viewing relations A - B as functions A X B — {true, false} via Remark1.1.3,
we see that strong hyperpointed relations may also be described as follows:

A strong hyperpointed relation from (X, x¢) to (Y, yo) isarelationf: X 4
Y such that we have an equality of sets

f(x0) = 30,
ie.:
| £ =y

6.4 Categories of Hyperpointed Sets

DEFINITION 6.4.1 » CATEGORIES OF HYPERPOINTED SETS

Hyperpointed sets and hyperpointed functions/relations assemble into the fol-
lowing (2-)categories:
. The category Sets™P'*

phisms between them;

of hyperpointed sets and lax hyperpointed mor-

. The category Sets™”P°"** of hyperpointed sets and oplax hyperpointed

morphisms between them;

. The category Sets"’® of hyperpointed sets and strong hyperpointed mor-
phisms between them;

. The category Rel"P'® of hyperpointed sets and lax hyperpointed rela-

tions between them;

. The category Rel"PoPI

relations between them;

of hyperpointed sets and oplax hyperpointed

- The category Relryp of hyperpointed sets and strong hyperpointed rela-

tions between them;

. The 2-category Rel™P'>* of hyperpointed sets and lax hyperpointed re-

lations between them;

. The 2-category Rel™’P°P'® of hyperpointed sets and oplax hyperpointed

relations between them;
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- The 2-category Relryp of hyperpointed sets and strong hyperpointed
relations between them.

PROPOSITION 6.4.2 » RELATION TO POINTED SETS

The assignment (X, xg) — (X, {xo}) sending a pointed set to its representable
hyperpointed set defines a fully faithful functor

Sets, <> Sets™P.

PROOF 6.4.3 » PROOF OF PROPOSITION 6.4.2

Omitted. =

6.5 Free Hyperpointed Sets

Let X be a set.

DEFINITION 6.5.1 » FREE HYPERPOINTED SETS

The free hyperpointed set on X is the hyperpointed set X* consisting of

- The Underlying Set. The set X* defined by

X*EX 1 pt

- The Basepoint. The element x of X™.

PROPOSITION 6.5.2 » PROPERTIES OF FREE HYPERPOINTED SETS
Let X be a set.

1. Functoriality |. The assignment X +— X defines functors

hyp,
(=)*: Sets — Sets"P™,

hyp,op!
(=)*: Sets — Sets, /PP

(=)*: Sets — Sets™P,

where
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- Action on Objects. For each X € Obj(Sets), we have

def

[()F]X) =X,

where X, is the hyperpointed set of Definition 6.5.1;

- Action on Morphisms. For each morphism f: X — Y of Sets, the
image
f+3 X, —Y,

of f by (—)* is the hyperpointed function defined by

def {f(x) ifx € X,

fr = * ifx = .

2. Functoriality 1. The assignment X +— X defines functors
(=)*: Rel — Rel™PX
(=)": Rel —» Relzyp")plax,
(=5)*: Rel —» Rel™P,
where
- Action on Objects. For each X € Obj(Rel), we have
[0 = X.,

where X, is the hyperpointed set of Definition 6.5.1;
- Action on Morphisms. For each morphismf: X b Y of Rel, theimage

f+: X4 Y,

of f by (—)* is the hyperpointed relation defined by

F*(x) def {f(x) ifx € X,

(%} ifx=x.

3. Adjointness . We have an adjunction’

(=)*
A
(=) 4 7%): Sets&J__/ SetghyPIax

—
N
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witnessed by a bijection of sets

Sets!”'((X,, {x}), (Y, 3)) = Sets(X, Y),

naturalin X € Obj(Sets) and (Y, yp) € Obj(SetSSVp,lax).
4. Adjointness Il. We have adjunctions

(=)*
((_)+ B /1:_,_\) Re|3 Re|:yp,lax’

™
oy

(=)*
((—)+ . /1:_,_\) Re|3 Re|:YPy0p|ax’

—
o

()"
(5" 47%=): ReIS Rel™®,

witnessed by bijections of sets

Rel™P!X((X,, {x}), (Y, y0)) = Rel(X,Y),

Rel ' ((X,., {*}), (Y, 30)) = Rel(X, ),

Rl ((X,., {x}), (Y, 30)) = Rel(X, ),
natural in X € Obj(Rel) and (Y, yo) € Obj(Rel:yp’lax), resp. (Y, yo) €
Obj(ReI:yp’°plax) and (Y, yo) € Obj(Re|2yp).

5. Symmetric Strong Monoidality With Respect to Wedge Sums |. The free hyper-
pointed set functor of Item 1 has a symmetric strong monoidal structure

((—)+, (-t (—);’u): (Sets, [ [, ®) — (Setsryp’lax, v, pt),

being equipped with isomorphisms of hyperpointed sets
Ol x vyt S (X 1Y),
i pe S 0%,

naturalin X, Y € Obj(Sets).
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6. Symmetric Strong Monoidality With Respect to Wedge Sums 1. The free hyper-

. Symmetric Strong Monoidality With Respect to Smash Products |. The free hy-

. Symmetric Strong Monoidality With Respect to Smash Products II. The free hy-

pointed set functors of Item 2 have symmetric strong monoidal structures
(% 1 ) Rel 11,8) — (Rel™™, v, pe),
(% "1, (2M): (Rel, 11,8) — (Rell™ P, v, pe),
(5 I EM): (Rel, 11,8) — (Rel™™, v, pt),
being equipped with isomorphisms of hyperpointed sets
O x vy b,
et pt 0",

natural in X, Y € Obj(Rel).

perpointed set functor of Item 1 has a symmetric strong monoidal structure
(5% (2, (D)) = (Sets, x,py) — (Setsl™'™, 7,87,
being equipped with isomorphisms of hyperpointed sets
(D XTAYT S (XX Y),
(=)™ s0 5 pt*,
natural in X, Y € Obj(Sets).

perpointed set functors of Item 2 have symmetric strong monoidal struc-
tures

(5% (2", (") (Rel,x, pt) — (Rell”P'™ 1, 8°),
2, () (9)E%) ¢ (Rel, , pt) — (Rel™POPI2X A 0)
(=) : p
=5 (27 (9)F7) ¢ (Rel,x, pt) — (Rell”™ A, 80),
((=) ¥
being equipped with isomorphisms of hyperpointed sets
(D)% XY AY b (X x Y,

(% 8% P ptt,
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natural in X, Y € Obj(Rel).

‘@Waming: This does not work if we replace Sets,t'yp'Iax by Sets!:yp’Oplax or Setsryp.

PROOF 6.5.3 » PROOF OF PROPOSITION 6.5.2

Item 1: Functoriality |

Clear.

Item 2: Functoriality |1

Clear.

Item 3: Adjointness |

Clear.

Item 4: Adjointness ||

Clear.

Item 6: Symmetric Strong Monoidality With Respect to Wedge Sums |

Omitted.

Item 6: Symmetric Strong Monoidality With Respect to Wedge Sums I
Omitted.

Item 7: Symmetric Strong Monoidality With Respect to Smash Products |

Omitted.

Item 8: Symmetric Strong Monoidality With Respect to Smash Products II

Omitted. =
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