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INTRODUCTION

This chapter contains basic material about categories, functors, natural

transformations, adjunctions, the Yoneda Lemma, monomorphisms, and
epimorphisms.

NOTES TO MYSELF

TODO:

1. Adjoints to the Yoneda embedding
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1 Categories

1.1 Foundations

DEFINITION 1.1.1 » CATEGORIES

A category (C, o, ¥C) consists of'?
- Objects. A class Obj(C) of objects;

- Morphisms. Foreach A, B € Obj(C), a class Hom¢ (A, B), called the class
of morphisms of C from A to B;

- Identities. For each A € Obj(C), a map of sets
uég: pt — Homg (A4, A),
called the unit map of C at A, determining a morphism
idg: A— A
of C, called the identity morphism of A;
- Composition. Foreach A, B, C € Obj(C), amap of sets
Og,B,C: Hom¢ (B, C) X Home (A, B) — Home (4, C),
called the composition map of C at (A, B, C);

such that the following conditions are satisfied:

1. Unitality of Composition. The diagrams

pt x C(A, B) C(A B) x pt
\\\ /-{Sets \\\ pSets
u‘f\‘ xidc(A,B) ) \\\(\,‘(A,B) ide(a,B) xutg ) S \(:‘(A'B)
\\\‘\i N \\\i
C(A A) X C(AB) ——> C(A,B) C(A B) X C(B,B) ——> C(A,B)

°AAB °ABB
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commute, i.e. for each morphismf: A — Bof C, we have

idgof=f
foidsa=f.

2. Associativity of Composition. The diagram

C(C,D) x (C(B,C) xC(A,B))

Set 2
aCe(CS,D)vC(B,C),CV va oG pe

(C(C,D)x C(B,C)) xC(A,B) C(C,D) xC(AC)

C .
°§.c,pXidc(aB) °ACD

C(B,D)x C(A,B) - C(A D)

ABD

commutes, i.e. for each composable triple (f, g, k) of morphisms of C, we
have

(fog)oh=fo(goh).

" Further Notation: We also write C (A, B) for Hom¢ (A, B).
2 Further Notation: We write Mor(C) for the class of all morphisms of C.

DEFINITION 1.1.2 » S1ZE CONDITIONS ON CATEGORIES

Let x be aregular cardinal. A category C is

1. Locally smallif, for each A, B € Obj(C), the class Hom¢ (A, B) is a set;
2. Locally essentially small if, for each A, B € Obj(C), the class
Homc (A, B) /{isomorphisms}
isaset;

3. Smallif C is locally small and Obj(C) is a set;
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4. x-Smallif Cis locally small, Obj(C) is a set, and

|0bj(C)| < .

EXAMPLE 1.1.3 » THE PUNCTUAL CATEGORY

The punctual category' is the category pt where

- Objects. We have
def

Obj(pt) = {*};
- Morphisms. The unique Hom-set of pt is defined by

Hompe (%, %) = {idy };
- Identities. The unit map
¥P5: pt —> Homp (%, %)
of pt at x is defined by
id” <id,;

- Composition. The composition map

pt

0t HOMpe (3, %) X Homp (%, %) — Homp (%, x)

of pt at (x, x, %) is given by the bijection pt X pt = pt.

"Further Terminology: Also called the singleton category.

EXAMPLE 1.1.4 » MONOIDS AS ONE-OBJECT CATEGORIES

We have an isomorphism of categories’

Mon — Cats

.
Mon = pt x Cats, | ‘Obj

Sets

pt W Sets

via the delooping functor B: Mon — Cats of 22 of 2.




o
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"This can be enhanced to an isomorphism of 2-categories

Monj_gise — Catsy
J
Mong gisc = ptpi . X Catsyy, Obj
Sets disc

Ptoi o Sets gisc

between the discrete 2-category Mony_gisc on Mon and the 2-category of pointed categories with
one object.

EXAMPLE 1.1.5 » THE EMPTY CATEGORY

The empty category is the category @ ot where

- Objects. We have

def .

Obj(Qcat) =0;
- Morphisms. We have

def

Mor(@cat) = @;

- Identities and Composition. Having no objects, @at has no unit nor composi-
tion maps.

EXAMPLE 1.1.6 » ORDINAL CATEGORIES

The nth ordinal category is the category < where'

- Objects. We have
Obj(<) £ {[0],..., [n]};

- Morphisms. For each [i], [j] € Obj(xx), we have

{idii} if [i] = [j].
Hom..([i], [j1) £ 3 {[i] — [} if[j] < [il,
0 if [j1 > [il;

- Identities. For each [i] € Obj(ix), the unitmap

MLTi] :pt— Homx([i], [l])
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of wat [i] is defined by
id™) = idpi);

. Composition. For each [i], [j], [k] € Obj(x), the composition map
of inter: Homw([jl, []) x Homic([i], [j]) — Hom([il, [k])
ofwat ([i], [j], [k]) is defined by

id(;) o idp) = idgy),
(L1 — [kD) o ([i] — [iD = ([i] — [kD).

"In other words,  is the category associated to the poset

[0] = [1I] — -+ — [n=1] — [n].

The category < forn > 2 may also be defined in terms of 0 and joins: we have isomorphisms of
categories
| =0x0,
2= %0
= (0x0) %0,
3=2%x0
= (Ix0)%x0
= ((0x0)%x0) %0,
4=3%0
= (2%x0)x0
= ((Ix0)%x0)x0
= (((0%x0) x0) x0) %0,

andsoon

1.2 Subcategories

Let C be a category.

DEFINITION 1.2.1 » SUBCATEGORIES

A subcategory of C is a category A satisfying the following conditions:

1. Objects. We have Obj(A) c Obj(C).
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2. Morphisms. Foreach A, B € Obj(A), we have

Homg# (A, B) € Homc (A4, B).

3. Identities. Foreach A € Obj(A), we have

A _ C
a = ¥4

¥
4. Composition. Foreach A, B, C € Obj(A), we have

A _ . C
©ABC = °ABC”

DEFINITION 1.2.2 » FULL SUBCATEGORIES

A subcategory A of C is full if the canonical inclusion functor A — C is full.

DEFINITION 1.2.3 » STRICTLY FULL SUBCATEGORIES

A subcategory A of a category C is strictly full if it satisfies the following condi-
tions:

1. Fullness. The subcategory A is full.

2. Closedness Under Isomorphisms. The class Obj(A) is closed under isomor-
phisms'.

'Thatis, given A € Obj(A) and C € Obj(C) withC = A, we have C € Obj(A).

DEFINITION 1.2.4 » WIDE SUBCATEGORIES

A subcategory A of C is wide' if Obj(A) = Obj(C).

Further Terminology: Or lluf.

1.3 Skeletons of Categories

DEFINITION 1.3.1 » SKELETONS OF CATEGORIES

A' skeleton of a category C is a full subcategory Sk(C) with one object from each
isomorphism class of objects of C.




O
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"Due to Item 2 of Proposition 1.3.3, we often refer to any such full subcategory Sk(C) of C as the
skeleton of C.

DEFINITION 1.3.2 » SKELETAL CATEGORIES

A category C is skeletal if C = Sk(C).

'Thatis, C is skeletal if isomorphic objects of C are equal.

PROPOSITION 1.3.3 » PROPERTIES OF SKELETONS OF CATEGORIES

Let C be a category.

1. Pseudofunctoriality. The assignment C +— Sk(C) defines a pseudofunctor

Sk: Catsy — Catss.

2. Uniqueness Up to Equivalence. Any two skeletons of C are equivalent.

3. Inclusions of Skeletons Are Equivalences. The Sk(C) < C of askeleton of C
into C is an equivalence of categories.

PROOF1.3.4 » PROOF OF PROPOSITION 1.3.3

Item 1: Pseudofunctoriality

See [nLab23d, Skeletons as an Endo-Pseudofunctor on €at].

Item 2: Uniqueness Up to Equivalence

Clear.

Item 3: Inclusions of Skeletons Are Equivalences

m

Clear.

1.4 Precomposition and Postcomposition

Let C be a category, let A, B,C € Obj(C),andletf: A — Bandg: B — Cbe
morphisms of C.
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DEFINITION 1.4.1 » PRECOMPOSITION

The precomposition function associated tof is the function
f*: Hom¢g(B,C) — Homg (A, C)

defined by

def

fr@)=¢of
foreach ¢ € Hom¢ (B, C).

DEFINITION 1.4.2 » POSTCOMPOSITION

The postcomposition function associated to g is the function
g+: Hom¢ (A, B) — Homg (A, C)

defined by

def

g(¢)=go¢
foreach ¢ € Hom¢g (A4, B).

PROPOSITION 1.4.3 » PROPERTIES OF PRE/POSTCOMPOSITION

Let A, B,C,D € Obj(C) andletf: A— Bandg: B — C be morphisms of
C.

1. Interaction Between Precomposition and Postcomposition. We have
Hom¢ (B, C) SN Hom¢ (B, D)
geof =f" og., f*‘ ‘f*
Hom¢ (4, C) — Hom¢ (A, D).
2. Interaction With Composition |. We have
Home (X, A) —— Homeg(X, B)

gof) =f og" m ‘g*

Home (X, C),
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1

Hom¢ (C, X) S Hom¢ (B, X)

(gof)*=g*o*r f*
(gof)”

Hom¢ (A, X).

3. Interaction With Composition 1. We have

pt LN Hom¢ (A, B) pt L= Hom¢ (B, C)

lsof1=g. 0] *
[gof] & [gofl=f"olgl,  Ilgof] f

4. Interaction With Composition I11. We have

ABD

5. Interaction With Identities. We have

(IdA)* = idHOmc(A,B)!
(idB)* = idHomC(A,B)-

Hom¢ (4, C) Hom¢ (A, C).

G
Hom¢ (A, B) X Hom¢ (B, C) 0 CN Hom¢ (A, C)
o Og,B,C = Og,B,C o (f* X id), f*><id| |f*
Hom¢ (X, B) X Hom¢ (B, C) —— Home (X, C),
°X,BC
°§Bc
Hom¢ (A, B) X Homg (B,C) —— Hom¢ (A, C)
8« © Og,B,C = Og,B,D o (id X g), idxg*| |g*

Hom¢ (A, B) X Homg (B, D) == Hom¢ (A, D).

Omitted.

PROOF 1.4.4 » PROOF OF PROPOSITION 1.4.3

Item 1: Interaction Between Precomposition and Postcomposition
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Item 2: Interaction With Composition |

Omitted.

Item 3: Interaction With Composition 1

Omitted.

Item 4: Interaction With Composition Il

Omitted.

Item 5: Interaction With Identities

Omitted.

m

1.5 The Fundamental Quadruple Adjunction

1.5.1 Statement

Let C be a category.

PROPOSITION 1.5.1 > A QUADRUPLE ADJUNCTION BETWEEN Sets AND Cats

We have a quadruple adjunction

VR TIRN
(_)disc

— N
70 4 (=) gice 40bj 4 (=) 4.): Sets i Cats,
(70 4 (=) disc ) =) (SDzefse) \Obj
L
(_)indisc

witnessed by bijections of sets

Homsets (10(C), X) = Homcais(C, Xdisc),
Homcats (Xgise, C) = Homsgees (X, Obj(C)),
Homsets (Obj(C), X) = Homcats(C, Xindisc),

naturalin C € Obj(Cats) and X € Obj(Sets), where

- 7, the connected components functor, is the functor sending a category
C tothe set 1y (C) of connected components of C of Definition1.5.4;

- (=) gisc, the discrete category functor is the functor sending a set X to the
discrete category Xgisc associated to X of Definition 1.5.8;
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- Obj is the functor sending a category to its set of objects;

- (=)indisc> the indiscrete category functor is the functor sending a set X to
the indiscrete category X;, 4isc associated to X of Definition1.5.11.

PROOF1.5.2 » PROOF OF PROPOSITION 1.5.1

Omitted. =

1.5.2 Connected Components of Categories

Let C be a category.

DEFINITION 1.5.3 » CONNECTED COMPONENTS OF CATEGORIES

A connected component of C is a full subcategory I of C satisfying the following
conditions:’

1. Non-Emptiness. We have Obj(I') # @.

2. Connectedness. There exists a zigzag of arrows between any two objects of
I.

"In other words, a connected component of C is an element of the set Obj(C) /~ with ~ the
equivalence relation generated by the relation ~’ obtained by declaring A ~” B iff there exists a
morphism of C from Ato B.

1.5.3 Sets of Connected Components of Categories
Let C be a category.

DEFINITION 1.5.4 » SETS OF CONNECTED COMPONENTS OF CATEGORIES

The set of connected components of C is the set 79 (C) whose elements are the
connected components of C.

PROPOSITION 1.5.5 » PROPERTIES OF SETS OF CONNECTED COMPONENTS
Let C be a category.

1. Functoriality. The assignment C — 71 (C) defines a functor

np: Cats — Sets.
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2. Adjointness’. We have a quadruple adjunction

0

VRN
(_)disc

. — T~
70 4 (—)disc 4 Obj 4 (—)indisc): Sets < Cats.
(mo 4 ( )dISC j( )lnd|sc) \Obj
L

(=Dindisc

3. Interaction With Groupoids. If C is a groupoid, then we have an isomorphism
of categories

m0(C) = K(C).

4. Preservation of Colimits. The functor 7 of Item 1 preserves colimits. In par-
ticular, we have bijections of sets

m0(C I D) = 7o(C) LI m0(D),
m0(C Llg D) = 70(C) Ly g) m0(D),

no(CoEq(C é; Z))) = CoEq(no(C) @ no(Z))),
G

m(G)
naturalin C, D, & € Obj(Cats).

5. Symmetric Strong Monoidality With Respect to Coproducts. The connected
components functor of Item 1 has a symmetric strong monoidal structure

(7o 241, 24l )+ (Cats, 11, @ear) —> (Sets, 11,9),
being equipped with isomorphisms
T 5t 70(C) L m0(D) = m0(C 11 D),
Aot @— 7o(Pear),

natural in C, D € Obj(Cats).

6. Symmetric Strong Monoidality With Respect to Products. The connected com-
ponents functor of Item 1 has a symmetric strong monoidal structure

(no, g, ﬂ(?lu‘): (Cats, x, pt) — (Sets, X, pt),
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being equipped with isomorphisms
”(Qﬁc,z): 10(C) X 1(D) — m(C x D),
ﬂ(é)glué: pti) mo(pt),

naturalin C, D € Obj(Cats).

This is a repetition of Proposition 1.5.1.

PROOF1.5.6 » PROOF OF PROPOSITION 1.5.5

Item 1: Functoriality

Omitted.
Item 2: Adjointness

Omitted.

Item 3: Interaction With Groupoids

n‘
(0]
QL
-

Item 4: Preservation of Colimits

This follows from Item 2 and Item 4 of Proposition 6.1.3.

Item 5: Symmetric Strong Monoidality With Respect to Coproducts
Omitted.
Item 6: Symmetric Strong Monoidality With Respect to Products

m

Omitted.

1.5.4 Connected Categories

DEFINITION 1.5.7 » CONNECTED CATEGORIES

A category C is connected if 7o (C) = pt."?

"Further Terminology: Moreover, a category is disconnected if it is not connected.
2Example: A groupoid is connected iff any two of its objects are isomorphic.

1.5.5 Discrete Categories

Let X be aset.
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DEFINITION 1.5.8 » THE DISCRETE CATEGORY ON A SET

The discrete category on aset X is the category Xgisc where

- Objects. We have
def

Obj(Xaisc) = X

- Morphisms. For each A, B € Obj(Xyisc), we have

o |idg ifA=B,
Hodeisc (A’ B) = {wA if A+ B;

- Identities. For each A € Obj(Xyisc), the unit map

Jedise . pt — Homy, (A, A)

PRE
of Xyisc at A is defined by
idfidisc d;f ldA,
- Composition. Foreach A, B, C € Obj(Xgisc), the composition map

fj‘;ccz Homy,,. (B,C) x Homy,, (A, B) — Homy, (A, C)

)

o
of Xyisc at (A, B, C) is defined by
idA o idA dZEf idA.

PROPOSITION 1.5.9 » PROPERTIES OF DISCRETE CATEGORIES ON SETS

Let X be a set.

1. Functoriality. The assignment X — Xisc defines a functor

(=) gisc : Sets — Cats.

2. Symmetric Strong Monoidality With Respect to Coproducts. The functor of
Item 1 has a symmetric strong monoidal structure

(e (s O, ) (Sets, 11,0) — (Cats, 11, B,
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being equipped with isomorphisms
(_)cgilst,Y: Xaisc 1 Yaisc — (X L Y)diser
()5t Peat — D,
natural in X, Y € Obj(Sets).

3. Symmetric Strong Monoidality With Respect to Products. The functor of Item 1
has a symmetric strong monoidal structure

((etser (Do (D) (Sets X, pt) —> (Cats, x, pt)
being equipped with isomorphisms
(_)?isch,Y: Xdisc X Ydisc — (X X Y)disc’
(_)§SC|F: pt;) ptdiscy

naturalin X, Y € Obj(Sets).

4. Adjointness'. We have a quadruple adjunction

T

0
/:\
(_)disc

— —~—

(mo (_)disc 4 Obj (_)indisc): Sets(\o\\ik‘)jcats'
4
(_)indisc

"This is a repetition of Proposition 1.5.1.

PROOF1.5.10 » PROOF OF PROPOSITION 1.5.9
Item 1: Functoriality

Omitted.

Item 2: Symmetric Strong Monoidality With Respect to Coproducts

Omitted.

Item 3: Symmetric Strong Monoidality With Respect to Products

Omitted.
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Item 4: Adjointness

This was proved in its repetition, Proposition 1.5.1. |

1.5.6 Indiscrete Categories

DEFINITION 1.5.11 » THE INDISCRETE CATEGORY ON A SET

The indiscrete category on aset X' is the category X;, 4isc Where

- Objects. We have
def

Obj(Xindisc) =X;

- Morphisms. For each A, B € Obj(X;,qisc), We have

def

Hodeisc(A’ B) = {[A] — [B]}’
- Identities. Foreach A € Obj(Xdisc), the unit map

Xip
JFA'”d'“: pt — Homy.

indisc (A’ A)
of X disc at Ais defined by

def

€l £ (14] — (4]

- Composition. Foreach A, B, C € Obj(X;,disc), the composition map

Xindisc .
ABC °

of Xyisc at (A, B, C) is defined by

o

(B,C) x Homy,

indisc

(A, B) — Homy;

indisc

Homy. (A,C)

indisc

def

([B] — [C]) o ([A] — [B]) = ([A] — [CD).

" Further Terminology: Also called the chaotic category on X.

PROPOSITION 1.5.12 » PROPERTIES OF INDISCRETE CATEGORIES ON SETS

Let X be a set.

1. Functoriality. The assignment X +— X, 4;sc defines a functor

(_)indisc: Sets — Cats.
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2. Symmetric Strong Monoidality With Respect to Products. The functor of Item 1
has a symmetric strong monoidal structure

((_)indisc’ (_)‘igr:disc’ (_)ﬁ]disc“‘) : (SEtsr X, pt) — (Cats, X, pt))
being equipped with isomorphisms

(_)ﬁ;disch,Y: Xindisc X Yindisc — (X x Y)indiso
(_)ﬁdiscly: Pt—> Plindisc
natural in X, Y € Obj(Sets).

3. Adjointness'. We have a quadruple adjunction

T

0
/:\
(_)disc

— —~~

(7f0 . (_)disc a Ob] B (_)indisc): Sem(\()\\;//(:ats.
€L
(_)indisc

This is a repetition of Proposition1.5.1.

PROOF1.5.13 » PROOF OF PROPOSITION 1.5.12

Item 1: Functoriality
Omitted.
Item 2: Symmetric Strong Monoidality With Respect to Products

Omitted.
Item 3: Adjointness

m

This was proved in its repetition, Proposition 1.5.1.

1.6 Groupoids
1.6.1 Foundations

Let C be a category.
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DEFINITION 1.6.1 » ISOMORPHISMS

A morphismf: A — B of C is an isomorphism if there exists a morphism
f~': B— AofC suchthat

fof ' =ids,
flof=ids

DEFINITION 1.6.2 » GROUPOIDS

A groupoid is a category in which every morphism is an isomorphism.

1.6.2 The Groupoid Completion of a Category

Let C be a category.

DEFINITION 1.6.3 » THE GROUPOID COMPLETION OF A CATEGORY

The groupoid completion of C” is the pair (Ky(C), t¢) consisting of
- A groupoid Ko (C);
- Afunctoric: C — Ko(QC);

satisfying the following universal property:

(up) Given another such pair (G, i), there exists a unique functor Ko (C) =N G
making the diagram

Ko(C)

1
1
« ]
1
v
_—

i

C

commute.

" Further Terminology: Also called the Grothendieck groupoid of C or the Grothendieck groupoid
completion of C.
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PROPOSITION 1.6.4 » PROPERTIES OF GROUPOID COMPLETION

Let C be a category.

1. Functoriality. The assignment C — Ko (C) defines a functor

Ko: Cats — Grpd.

2. Adjointness. We have an adjunction

Ko
(Ko 41): Cats 1  Grpd,

L

forming, together with the core functor Core of Item 1 of Proposition1.6.9,
atriple adjunction

Ko
71N
(Ko 4 ¢4 Core): Catse—:— Grpd.
N~

Core
3. Interaction With Classifying Spaces. We have an isomorphism of groupoids
Ko(C) = T<1(BC),
naturalin C € Obj(Cats); i.e. the diagram

Cats 2, Grp

11T

v
sSets = Top

commutes up to natural isomorphism.

4. Symmetric Strong Monoidality With Respect to Coproducts. The groupoid com-
pletion functor of Item 1 has a symmetric strong monoidal structure

0’ N0

(Ko, KL KB, ) (Cats, 11, Beat) — (Grpd. 11, Becr)
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being equipped with isomorphisms
Kot Ko(C) LT Ko(D) = Ko(C L1 D),
KHM‘ : Deat - Ko(Deat),

natural in C, D € Obj(Cats).

5. Symmetric Strong Monoidality With Respect to Products. The groupoid com-
pletion functor of Item 1 has a symmetric strong monoidal structure

(Ko, I<6<,K6<|u‘): (Cats, x, pt) — (Grpd, %, pt)
being equipped with isomorphisms
Kicn: Ko(C) X Ko(D) = Ko(C x D),
Ko © pt — Ko(pt),

naturalin C, D € Obj(Cats).

PROOF1.6.5 » PROOF OF PROPOSITION 1.6.4

Item 1: Functoriality

Omitted.
Item 2: Adjointness

Omitted.

Item 3: Interaction With Classifying Spaces

See Corollary18.33 of https://web.ma.utexas.edu/users/dafr/M392C-2
012/Notes/lecturel8.pdf.

Item 4: Symmetric Strong Monoidality With Respect to Coproducts
Omitted.

Item 5: Symmetric Strong Monoidality With Respect to Products

m

Omitted.

1.6.3 The Core of a Category

Let C be a category.


https://web.ma.utexas.edu/users/dafr/M392C-2012/Notes/lecture18.pdf
https://web.ma.utexas.edu/users/dafr/M392C-2012/Notes/lecture18.pdf
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DEFINITION 1.6.6 » THE CORE OF A CATEGORY

The core of C is the pair (Core(C), t¢)" consisting of
1. A groupoid Core(C);
2. Afunctoric: Core(C) — C;

satisfying the following universal property:

(up) Given another such pair (G, i), there exists a unique functor G =N
Core(C) making the diagram

Core(C)

commute.

"Further Notation: Also written C=.

CONSTRUCTION 1.6.7 » CONSTRUCTION OF THE CORE OF A CATEGORY

The core of C is the unique subcategory of C where'

1. Objects. We have

Obj(Core(C)) £ 0bj(C);

2. Morphisms. The morphisms of Core(C) are the isomorphisms of C.

"In other words, Core(C) is the maximal subgroupoid of C.

PROOF1.6.8 » PROOF OF CONSTRUCTION 1.6.7

This follows from the fact that functors preserve isomorphisms. |

PROPOSITION 1.6.9 » PROPERTIES OF THE CORE OF A CATEGORY

Let C be a category.
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1. Functoriality. The assignment C +— Core(C) defines a functor

Core: Cats — Grpd.

2. Adjointness. We have an adjunction

(¢ 4 Core): Grpdﬁ\ Cats,
—

Core

forming, together with the groupoid completion functor Ky of Item 1 of
Proposition 1.6.4, a triple adjunction

Ko

N
(Ko 4 ¢4 Core): Catse—:— Grpd.

Nt

Core

3. Symmetric Strong Monoidality With Respect to Products. The core functor of
Item 1 has a symmetric strong monoidal structure

(Core, Core™, Corey ) : (Cats, %, pt) — (Grpd, X, pt)
being equipped with isomorphisms
CoreéyD: Core(C) x Core(D) = Core(C x D),
Core; : pt —> Core(pt),

naturalin C, D € Obj(Cats).

PROOF1.6.10 » PROOF OF PROPOSITION 1.6.9
Item 1: Functoriality

Clear.

Item 2: Adjointness

The adjunction (Kg 4 ¢) follows from the universal property of the Gabriel—
Zisman localisation of a category with respect to a class of morphisms (2?), while
the adjunction (¢ 4 Core) is a reformulation of the universal property of the core
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of a category (Definition 1.6.6)."

Item 3: Symmetric Strong Monoidality With Respect to Products

Omitted. =

" Reference: [Rie17, Example 4.1.15]

2 Functors and Natural Transformations

2.1 Functors

2.1.1  Foundations

Let C and D be categories.

DEFINITION 2.1.1 » FUNCTORS

Afunctor F: C — D from C to D’ consists of*
1. Action on Objects. A map of sets
F: Obj(C) — Obj(D),
called the action on objects of F;
2. Action on Hom-sets. For each A, B € Obj(C), a map
Fap: Hom¢ (A, B) — Homgp (Fa, Fp),
called the action on Hom-sets of F at (A, B);
satisfying the following conditions:

1. Preservation of Composition. For each A, B, C € Obj(C), the diagram

=@
Hom¢ (B, C) X Hom¢ (A, B) AR Hom¢ (4, C)
FpcxFap Fac
Homg (Fp, Fc) X Homg (Fa, Fp) — Homg (Fa, Fc)
CFpFp.Fc

commutes, i.e. for each composable pair (g, f) of morphisms of C, we have

Fgof = Fg o Ff.
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2. Preservation of Identities. For each A € Obj(C), the diagram

pt

D
e
B
A

Homc (A, A) T Homo (Fa, Fa)

commutes, i.e. we have

Fyq, =idp,.

" Further Terminology: Also called a covariant functor.
2Einstein Notation: Given functors F: C — D and G: C°P — D, we write F4 for F(A) (resp.

G4 forG(A)) and Fy for F(f) (resp. Gf forG(f)).

EXAMPLE 2.1.2 » IDENTITY FUNCTORS
The identity functor of a category C is the functoridc: C — C where

1. Action on Objects. For each A € Obj(C), we have

def

ide(A) = A3

2. Action on Morphisms. For each A, B € Obj(C), the action on morphisms

map

(id¢) o p: Homc (A, B) — Home (idc(A), idc(B))

déhomc (AB)

ofidc at (A, B) is defined by

(idc) a B = idHome (4,B)-

PROOF 2.1.3 » PROOF OF EXAMPLE 2.1.2
Preservation of Identities

We have id¢ (id) “'id, foreach A € 0bj(C) by definition.

Preservation of Compositions
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For each composable pair A L B2, Bof morphisms of C, we have

ide(gof)Egof
def

=idc(g) o ide(f).

This finishes the proof. |

PROPOSITION-DEFINITION 2.1.4 » COMPOSITION OF FUNCTORS

The composition of two functors F: C — D and G: D — & is the functor
G o Fwhere

- Action on Objects. For each A € Obj(C), we have

def

(G o F)y =Gr,;

- Action on Morphisms. For each A, B € Obj(C), the action on morphisms
map

(Go F)A,B: Hom¢ (A, B) — Homg(GFA,GFB)
of G o Fat (A, B) is defined by

def

(G o F); £ Gp,.

PROOF 2.1.5 » PROOF OF PROPOSITION-DEFINITION 2.1.4
Preservation of Identities

Foreach A € Obj(C), we have

GpidA = GidFA (by the functoriality of F)

= idGFA' (by the functoriality of G)
Preservation of Composition
For each composable pair (g, f) of morphisms of C, we have

GFgof = GFg oFf (by the functoriality of F)
= GFg ° GFf~ (by the functoriality of G)
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This finishes the proof. =

2.1.2 Conditions on Functors

DEFINITION 2.1.6 » CONDITIONS ON FUNCTORS

AfunctorF: C — Diis
1. Faithful if, for each A, B € Obj(C), the action on morphisms map
Fap: Home (A, B) — Homg (Fa, Fp)
of F at (A, B) is injective.
2. Fullif, foreach A, B € Obj(C), the action on morphisms map
Fap: Hom¢ (A, B) — Homgp (Fy4, Fp)
of F at (A, B) is surjective.

3. Fully faithful if F is full and faithful, i.e. if, for each A, B € Obj(C), the
action on morphisms map

Fap: Homc (A, B) — Homgp (Fa, Fp)
of F at (A, B) is bijective.
4. Conservative if whenever Fy is an isomorphismin D, soisf inC'

5. Essentially surjective if, for each D € Obj(D), there exists some object A
of Csuchthat F4 = D.

"Since functors preserve isomorphisms, we see that F is conservative iff, foreach f € Mor(C), we
have
(fisanisomorphism) <= (Fy isanisomorphism).

PROPOSITION 2.1.7 » FULLY FAITHFUL FUNCTORS ARE CONSERVATIVE

Every fully faithful functor is conservative.
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PROOF 2.1.8 » PROOF OF PROPOSITION 2.1.7

Let F: C — D beafully faithful functor,f : A — B be a morphism of C, and
suppose that Fy is an isomorphism. Then we have

Fi, = idp,
=FroF;!

= Ffof*' .

Similarly, Fiq, = Fy-1,¢. As Fis fully faithful, we have

fof™ =ids,
flof=ids
Hence f is an isomorphism and F is conservative. =

2.1.3 The Natural Transformation Associated to a Functor

PROPOSITION 2.1.9 » THE NATURAL TRANSFORMATION ASSOCIATED TO A FUNCTOR

Every functor F: C — D defines a natural transformation

op
CcoP x ¢ E2XE, pyop

FT: HOmC — HOmD o (FOP X F), Home Ft / Homg
7
Sets = Setsy
called the natural transformation associated to F, consisting of the collection

F'_: Homg(A, B) —> Homgp (Fy, F }
{ AB O ) — eI ({L) (A,B) €0bj(CoPxC)

with
+  def
Fl ;S Fap.
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PROOF 2.1.10 » PROOF OF PROPOSITION 2.1.9

The naturality condition for FT is the requirement that for each morphism

(6¥): (X,Y) — (A B)

of C°P x C, the diagram

4o ()00
——

Hom¢(X,Y) L Hom¢ (A, B)

Fxy ‘ ‘FA,B

Homp(FX, FY) w’ Homﬂ(FA, FB),

d
:ei"wo(—)ol“ﬁ
acting onelements as

fr———yofo¢

| |

Ff —— FyoFroFy=Fyofoy

commutes, which follows from the functoriality of F. =

2.2 Natural Transformations

2.2.1 Foundations

Let C and D be categoriesand F, G: C —= D be functors.

DEFINITION 2.2.1 » TRANSFORMATIONS

unnat
Atransformation’? «: F = G from F to G is a collection
{aa: Fa — Ga}acobico)

of morphisms of D.

"Further Terminology: Also called an unnatural transformation for emphasis.
2Further Notation: We write UnNat(F, G) for the set of unnatural transformations from F to G.
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DEFINITION 2.2.2 » NATURAL TRANSFORMATIONS

A natural transformation’ «: F = G from F to G is a transformation

{@a: Fa — Gal}acobi(c)
from F to G such that, for each morphismf: A — B of C, the diagram

Fy
Fy —— Fp

aa ap

G4 — Ggp

Gy
commutes.>3
"Pictured in diagrams as

F

T T

@ ﬂ D.

v

G

2Further Terminology: The morphisma4: F4 —> G is called the component of z at A.
3 Further Notation: We write Nat(F, G) for the set of natural transformations from F to G.

EXAMPLE 2.2.3 » IDENTITY NATURAL TRANSFORMATIONS

The identity natural transformationidr: F = F of F is the natural transfor-
mation consisting of the collection

{idFA 1 Fy— FA}AeObj(C)'

PROOF 2.2.4 » PROOF OF EXAMPLE 2.2.3

The naturality condition for idr is the requirement that, for each morphism
f: A— BofC,thediagram

Fr
Fy —— Fp
idr, idr,

FAT’FB




2.2 Natural Transformations

32

commutes, which follows from unitality of the composition of C.

=

f: G = Hasinthediagram

with

foreach A € Obj(C).

is the natural transformation o a: F = H consisting of the collection

{(ﬂ oca)y: Fy — HA}AeObj(C)

(Boa)sZ facan

DEFINITION 2.2.5 » VERTICAL COMPOSITION OF NATURAL TRANSFORMATIONS

The vertical composition of two natural transformations a: F — G and

diagram

aa

Ba

commutes. Since

Fy

(€]

Ga —Gr> Gp

(2)

Hy

Fy —— Fp

aB

Es

Hy —— Hp

1. Subdiagram (1) commutes by the naturality of «;

2. Subdiagram (2) commutes by the naturality of §3;

PROOF 2.2.6 » PROOF OF DEFINITION 2.2.5

The naturality condition for o a is the requirement that the boundary of the
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so does the boundary diagram. Hence f3 o « is a natural transformation. =

DEFINITION 2.2.7 » HORIZONTAL COMPOSITION OF NATURAL TRANSFORMATIONS

The horizontal composition’ of two natural transformations«: F = G and
f: H= Kasinthediagram

F H
c < oD 4 &
G K

of @ and f is the natural transformation
B*xa: (HoF)= (KoG),

as in the diagram

consisting of the collection

{(ﬁ *a),: Hp, — KGA}AeObj(C)’
of morphisms of & with
He,
def HFA - HGA
(B*a)s =B, © He, 8
= KaA € BFA’ " "

Ky, — Kg,.
Fy KnA Ga

" Further Terminology: Also called the Godement product of « and f.
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PROOF 2.2.8 » PROOF OF DEFINITION 2.2.7

The naturality condition for  x « is the requirement that the boundary of the
diagram

Heg
Hp, Hp,
Hey (1) Hey
Hg, —He; — Hg,
By (2) Bap
Ko, —— Koy

commutes. Since
1. Subdiagram (1) commutes by the naturality of a;
2. Subdiagram (2) commutes by the naturality of 3;

so does the boundary diagram. Hence f3 o « is a natural transformation. =

"Reference: [Boro4b, Proposition1.3.4].

2.2.2 Properties of Natural Transformations

PROPOSITION 2.2.9 » NATURAL TRANSFORMATIONS AS HOMOTOPIES

"Let F,G: C =3 D be functors. The following data are equivalent:

1. Anatural transformationa: F = G.
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2. Afunctor [a]: C — D! filling the diagram

D

/ evo

C---o D! (2.2.1)

eviy
G

D

3. Afunctor [a]: C X | — D filling the diagram

CxX| ——> D (2.2.2)

"Taken from [MO M064365].

PROOF 2.2.10 » PROOF OF PROPOSITION 2.2.9
Item1 & Item 2

By 22, we may identify D' with Arr(D). Given a natural transformationa : F =
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G, we have a functor

[«]: C D'
At aA
Fr

GAT)GB

making Diagram (2.2.1) commute. Conversely, every such functor gives rise to a
natural transformation from F to G.

Item2 & Item3

This follows from 22 of Proposition 2.3.2. |

PROPOSITION 2.2.11 » PROPERTIES OF COMPOSITION OF NATURAL TRANSFORMA-
TIONS

Let C, D, and & be categories.

1. Vertical Composition Is Strictly Associative and Unital. Let F,G, H,K: C =3
D be functors and

Fs b gtk

be natural transformations. Then

idgoa=a,
aoidr = a,

(yoB)oa=yo(foa)

2. Horizontal Composition of Natural Transformations Preserves Identities. Let
F:C— DandG: D —> & be functors. We have

idg *idp = idgor.
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3. Middle Four Exchange. Given natural transformations &, ’, f,and ” asin

the diagram
F G
N TN
C—F— D —c¢— &,
W &'U/
F” G"
we have

(B xa') o (Bra)=(p"op)*(a oa).

PROOF 2.2.12 » PROOF OF PROPOSITION 2.2.11

Item 1: Vertical Composition Is Strictly Associative and Unital

This follows from the fact that these identities hold at each component. In detail,
given A € Obj(C), we have

(idg o @), = idG 0 ag = ay,
(0{ o idF)A =0p© idF = QaA.
Similarly, we have
((yopB)oa)y=(yaoPa)oan

=ya0 (faoays)

=(yo(Boa),

Item 2: Horizontal Composition of Natural Transformations Preserves Identitig

Foreach A € Obj(C), we have

(idg * idr) 4 = (idc)p, © Gide),
Zidg,, © Gig,

= idGFA o idGFA

~ id,,

= (idgor) o

Henceidg * idp = idgoF.
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Item 3: Middle Four Exchange
Let A € Obj(C) and consider the diagram

G

G%/ \ﬁF;{

’
G"A ’” ﬂFX ’”
Gp, — Gp, )  Gj, —> Gf.
A A
A
G,

The top composition is ((f” o ) * (a” o 2)) , and the bottom composition is
(g’ *a’) o (B xa)),. Since Subdiagram (1) commutes, they are equal. =

DEFINITION 2.2.13 » EQUALITY OF NATURAL TRANSFORMATIONS

Two natural transformations a, f: F = G are equal if, foreach A € 0bj(C),
we have

ap = ﬂA-

2.2.3 Natural Isomorphisms

DEFINITION 2.2.14 » NATURAL ISOMORPHISMS

A natural transformation a: F = G between functors F,G: C — D be-
tween categories C and D is a natural isomorphism if there exists a natural
transformation « ™1 : G = F such that

aoa ! = idg,

a'oa=idp.

PROPOSITION 2.2.15 » PROPERTIES OF NATURAL ISOMORPHISMS

Leta: F = G be a natural transformation.

1. Characterisations. The following conditions are equivalent:

(@) The natural transformation « is a natural isomorphism.
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(b) Foreach A € Obj(C), the morphismas: F4 —> G4 isanisomor-

phism.
PROOF 2.2.16 » PROOF OF PROPOSITION 2.2.15
Omitted. =

2.3 Categories of Categories

2.3.1  Functor Categories

Let C be a category and D be a small category.

DEFINITION 2.3.1 » FUNCTOR CATEGORIES

The category of functors from C to D' is the category Fun(C, D)* where
- Objects. The objects of Fun(C, D) are functors from C to D;
- Morphisms. Foreach F, G € Obj(Fun(C, D)), we have
Homeun(c,0) (F, G) £ Nat(F, G);

- Identities. Foreach F € Obj(Fun(C, D)), the unit map
Fun(C,D) .
¥ : pt — Nat(F, F)

of Fun(C, D) at F is given by
id; ") Zid

’

where idp: F = F is the identity natural transformation of F of Exam-
ple2.2.3;

- Composition. Foreach F, G, H € Obj(Fun(C, D)), the composition map

oFun(CD). Nat(G, H) x Nat(F, G) —> Nat(F, H)

of Fun(C, D) at (F, G, H) is given by

Fun(C,D)  def
rGH  A=Boa

where 8 o « is the vertical composition of 2 and 8 of Definition 2.2.5.

0r the functor category Fun(C, D).
2Further Notation: Also written D and [C, D].
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PROPOSITION 2.3.2 » PROPERTIES OF FUNCTOR CATEGORIES

Let C and D be categoriesand let F: C — D be a functor.

1. Functoriality. The assignments C, D, (C, D) +— Fun(C, D) define func-
tors
Fun(C,—;): Cats — Cats,
Fun(-1, D): Cats®® — Cats,

Fun(—1,—2): Cats®® x Cats — Cats.

2. 2-Functoriality. The assignments C, D, (C, D) +— Fun(C, D) define 2-
functors
Fun(C,—): Catsy — Catsy,
Fun(—1,D): Catsgp — Catsy,

Fun(-1,—2): Cats,” x Cats; — Catsp.

3. 2-Adjointness. We have 2-adjunctions
Cx—
~—
(Cx—4Fun(C,-)): Catsy -+ Catsy,
~—
Fun(C,-)
-xXD
N
(=X D 4Fun(D,-)): Catsp +L» Catsp,
~—
Fun(D,-)

witnessed by isomorphisms of categories

Fun(C x D, &) = Fun(D, Fun(C, &)),
Fun(C x D, &) = Fun(C,Fun(D, &)),

natural in C, D, & € Obj(Catsy).

4. Adjointness. We have adjunctions
Cx—
—
(Cx—4Fun(C,-)): Cats o Cats,
~—
Fun(C,-)
-xD
—
(=XD4Fun(D,-)): Cats + Cats,
~—
Fun(D,-)
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witnessed by bijections of sets

Homcais(C X D, E) = Homcats (D, Fun(C, E)),
HomCats(C x D, 8) = HomCats(Cy FUI’I(D, 8));

natural inC, D, & € Obj(Cats).
5. Trivial Functor Categories. We have a canonical isomorphism of categories
Fun(pt,C) = C,
natural in C € Obj(Cats).

6. Characterisations of Fully Faithfulness. The following conditions are equiva-
lent:

(@) ThefunctorF: C — D is fully faithful.
(b) Foreach X € Obj(Cats), the functor

F*: Fun(D,X) — Fun(C, X)

is fully faithful.
(c) Foreach X € Obj(Cats), the functor

F.: Fun(X,C) — Fun(X, D)
is fully faithful.
7. Objectwise Computation of Co/Limits. Let

D: I — Fun(C, D)
be adiagramin Fun(C, D). We have isomorphisms

lim(D) 4 = lim(D;(A)),

iel
colim(D) 4 = colim(D;(A)),
iel

naturallyin A € Obj(C).

8. Bicompleteness. If & is co/complete, thensois Fun(C, &).

9. Abelianness. If & is abelian, then sois Fun(C, &).
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10. Monomorphisms and Epimorphisms. Let a: F = G be a morphism of
Fun(C, D). The following conditions are equivalent:

(@) The natural transformation
a: F—= G

is a monomorphism (resp. epimorphism) in Fun(C, D).
(b) Foreach A € Obj(C), the morphism

aA. FA—>GA

isa monomorphism (resp. epimorphism) in D.

PROOF 2.3.3 » PROOF OF PROPOSITION 2.3.2

Item 1: Functoriality
Omitted.

Item 2: 2-Functoriality

Omitted.
Item 3: 2-Adjointness

Item 4: Adjointness

Item 5: Trivial Functor Categories

opm om0
3. 3. 3
o C B
o o o

Item 6: Characterisations of Fully Faithfulness
See [Low1s, Propositions A.l.5].
Item 7: Objectwise Computation of Co/Limits

Omitted.

Item 8: Bicompleteness

This follows from 22.

Item 9: Abelianness

@)
3.
&
a
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Item 10: Monomorphisms and Epimorphisms

Omitted. =

2.3.2 TheCategory of Categories and Functors

DEFINITION 2.3.4 » THE CATEGORY OF CATEGORIES AND FUNCTORS

The category of (small) categories and functors is the category Cats where
- Objects. The objects of Cats are small categories;

- Morphisms. Foreach C, D € Obj(Cats), we have

def

HomCats(Cx D) = Ob](FUn(C, D))a

- Identities. For each C € Obj(Cats), the unit map
KS: pt — Homcats(C, C)
of Cats at C is defined by
idS = ide,
whereid¢: C — Cis the identity functor of C of Example 2.1.2;

- Composition. Foreach C, D, & € Obj(Cats), the composition map

oS Homcats(D, &) X Homcats(C, D) —> Homeys(C, E)

of Catsat (C, D, &) is given by

def

Gog?;jSF:GOF,

where G o F: C — & is the composition of F and G of Proposition-
Definition 2.1.4.

PROPOSITION 2.3.5 » PROPERTIES OF THE CATEGORY Cats

Let C be a category.

1. Co/Completeness. The category Cats is complete and cocomplete.
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2. Cartesian Monoidal Structure. The quadruple (Cats, X, pt, Fun) is a Carte-
sian closed monoidal category.

PROOF 2.3.6 » PROOF OF PROPOSITION 2.3.5

Item 1: Co/Completeness
See [Lor21, Proposition A.4.20].

Item 2: Cartesian Monoidal Structure

Omitted. =

2.3.3 The 2-Category of Categories, Functors, and Natural Transformations

DEFINITION 2.3.7 » THE 2-CATEGORY OF CATEGORIES

The 2-category of (small) categories, functors, and natural transformations is
the 2-category Cats, where

- Objects. The objects of Cats; are small categories;

- Hom-Categories. For each C, D € Obj(Cats;), we have

def

HO""Catsg (C! -D) = Fun(C, D)a

- Identities. For each C € Obj(Catsy), the unit functor

Jlégatsz: pt — Fun(C,C)

of Cats; at C is the functor picking the identity functoridg : C — C of
C;
- Composition. Foreach C, D, & € Obj(Cats;), the composition bifunctor

oGy Homcas, (D, E) X Homcats, (C, D) — Homcats, (C, E)

of Catsp at (C, D, &) is the functor where

- Action on Objects. For each object (G,F) €
Obj(HomCat52 (-D; 8) X HomCat52 (C; D))»We have
def

0¥ (G,F) £ G o F;
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- Action on Morphisms. For each morphism (§,2): (K, H) = (G, F)
of Homcats, (D, &) X Homcats, (C, D), we have

Cat def
oS5 (Ba) L pra,

where *a is the horizontal composition of « and f of Definition2.2.7.

2.3.4 The Category of Groupoids

DEFINITION 2.3.8 » THE CATEGORY OF SMALL GROUPOIDS

The category of small groupoids is the full subcategory Grpd of Cats spanned by
the groupoids.

2.3.5 The 2-Category of Groupoids

DEFINITION 2.3.9 » THE 2-CATEGORY OF SMALL GROUPOIDS

The 2-category of small groupoids is the full sub-2-category Grpd, of Catsp
spanned by the groupoids.

2.4 Equivalences of Categories
An equivalence of categories consists of a pair of functors
F:C29D:G

together with natural isomorphisms F o G = idp and G o F = id¢.”

TIn this situation, some authors call the functor G a quasi-inverse to F.

PROPOSITION 2.4.2 » PROPERTIES OF EQUIVALENCES OF CATEGORIES

Let F: C — D bea functor.

1. Characterisations. If C and D are small’, then the following conditions are
equivalent:?
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(@) The functor F is an equivalence of categories.
(b) The functor F is fully faithful and essentially surjective.

(©) Theinduced functor Flgy(c): Sk(C) — Sk(D) is an isomorphism
of categories.

2. Two-Out-of-Three. Let

C GoF 8
R A (2.4.7)
D

be a diagram in Cats. If two out of the three functors among F, G, and

3. Stability Under Composition. Let

F F
C D &
G G’

beadiagramin Cats. If (F, G) and (F’, G’) are equivalences of categories,
then sois their composite (F’ o F, G’ o G).

4. Equivalences vs. Adjoint Equivalences. Every equivalence of categories can be
promoted to an adjoint equivalence?

'Otherwise there will be size issues here. One can also work with large categories and universes,
or require F to be constructively essentially surjective; see [MSE 1465107].

2|n ZFC, the equivalence between Item (a) and Item (b) is equivalent to the axiom of choice; see
MO 119454].

In Univalent Foundations, this is true without requiring neither the axiom of choice nor the law of

the excluded middle.

3More precisely, we can promote an equivalence of categories (F, G, 7, ¢) to adjoint equivalences
(F,G,n’,¢)and (F,G,n,¢’).

G o Fin Diagram (2.4.1) are equivalences of categories, then so is the third.

Item 1: Characterisations

We claim that Items (a) to (c) are indeed equivalent:
1. Item (a) = Item (b). Clear.

2. Item (b)) = Item (a). Since F is essentially surjective and C and D are

PROOF 2.4.3 » PROOF OF PROPOSITION 2.4.2
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small, we can choose, using the axiom of choice, for each B € Obj(D), an
object jp of C and anisomorphismig: B — Fj, of D.

Since F is fully faithful, we can extend the assignment B +— jp to a unique
functorj: © — C such that the isomorphismsig: B — Fj, assem-

ble into a natural isomorphism 7: idpy = F o j, with a similar natural

isomorphisme: ide = j o F. Hence Fis an equivalence.

3. Item (a) = Item (c). This follows from 22.

Item 2: Two-Out-of-Three

Omitted.

Item 3: Stability Under Composition

Clear.
Item 4: Equivalences vs. Adjoint Equivalences
See [Rie17, Proposition 4.4.5]. =

2.4.1 Isomorphisms of Categories

DEFINITION 2.4.4 » |ISOMORPHISMS OF CATEGORIES
An isomorphism of categories is a pair of functors
F:c=29D:G

suchthat Fo G =idpand G o F = id¢.

EXAMPLE 2.4.5 » EQUIVALENT BUT NON-ISOMORPHIC CATEGORIES

For an example of two categories which are equivalent but non-isomorphic, see
[Lor21, Example A.3.12].

PROPOSITION 2.4.6 » PROPERTIES OF ISOMORPHISMS OF CATEGORIES

LetF: C — D bea functor.

1. Characterisations. If C and D are small, then the following conditions are
equivalent:




(@) The functor F is an isomorphism of categories.

(b) The functor F is fully faithful and a bijection on objects.

PROOF 2.4.7 » PROOF OF PROPOSITION 2.4.6

Item 1: Characterisations

Omitted, but similar to Item 1 of Proposition 2.4.2. |

3  Profunctors

3.1 Foundations

Let C and D be categories.

DEFINITION 3.1.1 » PROFUNCTORS

A profunctor' p: C — D from C to Disafunctorp: D°P x C —> Sets.

"Further Terminology: Also called a distributor, a bimodule, a correspondence, or a relator.

REMARK 3.1.2 » EQUIVALENT DEFINITIONS OF PROFUNCTORS

Equivalently, we may define a profunctor from C to D as:
1. Afunctorp: D°P X C — Sets;
2. Afunctorp: C — PSh(D);
3. Afunctorp: D°P — Fun(C, Sets);
4. Acocontinuous functorp: PSh(C) — PSh(D);

Thatis, we have isomorphisms of categories

Prof(C, D) = Fun(C, PSh(D)),
= Fun(D°P, CoPSh(C)),
= Fun®°"(PSh(C), PSh(D)),

naturalin C, D € Obj(Cats).
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PROOF 3.1.3 » PROOF OF REMARK 3.1.2

We claim that Items1to 4 are indeed equivalent:

- The equivalence between Items1and 2 is an instance of currying, following
from the isomorphisms of categories

Fun(D°P x C, Sets) = Fun(C, Fun(D°P, Sets)) (Item 3 of Proposition 2.3.2)
£ Fun(C, PSh(D)).

- The equivalence between Items 1 and 3 is also an instance of currying,
following from the isomorphisms of categories

Fun (DOP X C, Sets) = Fun (DOP, Fun(C, Sets)) (1tem 3 of Proposition 2.3.2)

def

= Fun(D°P, Fun(C, Sets)).

- The equivalence between Items1and 4 follows from the universal property
of the category PSh(C) of presheaves on C as the free cocompletion of C
via the Yoneda embedding

& : C°% — PSh(QC)
of C into PSh(C) (2? of Proposition 7.3.2).

This finishes the proof. =

3.2 The Bicategory of Profunctors

DEFINITION 3.2.1 » THE BICATEGORY OF PROFUNCTORS

The bicategory of profunctors is the bicategory Prof where'
1. Objects. The objects of Prof are categories;
2. 1-Morphisms. The 1-morphisms of Prof are profunctors;

3. 2-Morphisms. The 2-morphisms of Prof are natural transformations be-
tween profunctors;

4. ldentities. For each C € Obj(Prof), we have

A Home (-, -);




3.3 Operations With Profunctors 50

5. Composition. Foreach C, D, & € Obj(Prof), the composition bifunctor
o: Prof(D, &) x Prof(C, D) — Prof(C, &)

is defined on objects by sending profunctorsp: C - Dandq: D b
& to the profunctor g ¢ p of Definition 3.3.2.

"The bicategory Prof admits a nice strictification to a 2-category: it is biequivalent to the sub-
bicategory of Cats spanned by the presheaf categories, cocontinuous functors between them, and
natural transformation between these.

PROOF 3.2.2 » PROOF OF DEFINITION 3.2.1

See Enriched Categories, Proposition-Definition 4.1.4. |

3.3 Operations With Profunctors

3.3.1 The Domain and Range of a Profunctor

DEFINITION 3.3.1 » THE DOMAIN AND RANGE OF A PROFUNCTOR

Letp: C - D bea profunctor.”

1. Thedomainofyp is the presheaf dom(p) : D°P — Setson D defined by
— def -
= coli .
dom(p)~ = colim (v5)
2. Therange of p is the copresheaf range(p) : C — Setson C defined by

range(p)_ < c/?elizr)n (p‘_‘).

"In other words, the domain and range of p are the functors
dom(p): D°P — Sets,
range(p): C — Sets
defined by

D 2, PSh(D) ¢ 5 Fun(C, Sets)
def Loy
dom(p) = colim o p',

colim colim

dom(p) range(p) 2 colim o pt range(p)

Sets, Sets.
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3.3.2 Composition of Profunctors

LetC, D, and & be categoriesand letp: C - Dandq: D —» & be profunctors.

DEFINITION 3.3.2 » COMPOSITION OF PROFUNCTORS

The composition of p and q is the profunctorq o p: C — & defined by’

e BeD
(qop)7 = / az' xp?.

TAlternatively, we may define q o p (using the equivalent definition of Item 2 of Remark 3.1.2) by

)
D -2 PSh(Q).

(qoxa)*dgLan;(f) oqf, £
Lan;(pT)
& —— PSh(D)
q

3.3.3 Representable Profunctors

DEFINITION 3.3.3 » THE REPRESENTABLE PROFUNCTOR ASSOCIATED TO A FUNCTOR

The representable profunctor associated to a functor F': C — D is the pro-
functor F*: C - D defined as the adjunct of the composition

c-L D2 Psh(D)
under the adjunction
Fun(D°P x C, Sets) = Fun(C, PSh(D))

of Item 3 of Proposition 2.3.2.

"That is, we have

F"d:efHomD(—l,F_z).

DEFINITION 3.3.4 » REPRESENTABLE PROFUNCTORS

A profunctor is representable if it is isomorphic to a representable profunctor.
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DEFINITION 3.3.5 » THE COREPRESENTABLE PROFUNCTOR ASSOCIATED TO A FUN-
CTOR

The corepresentable’ profunctor associated to a functor F: C — D is the
profunctor F,.: O — C defined as the adjunct of the composition

Fop f
C% — D — CoPSh(D)
under the adjunction
Fun(C°P x D, Sets) = Fun(C°P, CoPSh(D))

of Item 3 of Proposition 2.3.2.

Some authors call both F* and F, the representable profunctors associated to F.
2Thatis: ot

~ de

F* = HomD (F_l’ —92, )

DEFINITION 3.3.6 » COREPRESENTABLE PROFUNCTORS

A profunctor is corepresentable if it is isomorphic to a corepresentable profunctor.

3.3.4 Collages

Let C and D be categories.

DEFINITION 3.3.7 » THE COLLAGE OF A PROFUNCTOR

The collage of a profunctorp: C — D is the category Coll(p)' where?
- Objects. We have

def

Obj(Coll(p)) = Obj(C) L1 Obj(D);
- Morphisms. Foreach A, B € Obj(Coll(p)), we have

Hom¢c (A, B) if A, B € 0bj(C),
e« | Homgp (A, B) ifA, B € 0Obj(D),
Homcoii(p) (4, B) £ o(4,B) . , (D) .
p(A, B) if A € Obj(C) and B € Obj(D),
? if A € Obj(D) and B € Obj(C);

- Identities. For each A € Obj(Coll(p)), the unit map

I
"‘io ®). pt — Homcoii(p) (A, A)
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of Coll(p) at Ais defined by

gt id§  ifA € Obj(C),
A7 )id2 ifA € obj(D);

- Composition. Foreach A, B, C € Obj(Coll(p)), the composition map
Il
OZ(‘JB‘(Cp)I Homcolip) (B, C) X Homcei(p) (A, B) — Homgyi(p) (4, C)

of Coll(p) at (A, B, C) is defined by?

of,c ifAB,C €0bj(0),
p2?  if A, B € Obj(C) and C € Obj(D),
l if A,C € Obj(C) and B € Obj(D),
Coll(p) aef ) ¢ if B,C € Obj(C) and A € Obj(D),
°apc T pac  ifA€0bj(C)andB,C € Obj(D),
t if B € Obj(C) and A, C € Obj(D),
t if C € Obj(C) and A, B € Obj(D),

P, ifA B C e 0bj(D).

"Further Notation: Also written C %P D, notably in [Luro9, Section 2.3.1].
2We also have a functor ¢: Coll(p) — | where

- Actions on Objects. For each A € Obj(Coll(p)), we have

p def | [0] ifA € Obj(C),
A7\ [1] ifA € obj(D).

- Actions on Morphisms. For each A, B € Obj(Coll(p)), the action on morphisms
¢aB5: Homeo(p) (4, B) — Homeyi(p) (64, ¢B)
of pat (A, B) is given by
id[O] ifA,B (S Obj(C),

éan(H) = idp) if 4, B € Obj(D),
[0] — [1] ifA € Obj(C)andB € Obj(D).
If A € Obj(D) and B € Obj(C), we have ¢4 5 < idy.
3Here the maps pg’B and p?,c are the maps
pe: p¢ x Home (A, B) — p¢,
pgcz Homgp (B,C) x pﬁ -— pé

coming from the profunctor structure of p and the ¢'s are inclusions of the empty set into the appropri-
ate Hom sets.
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EXAMPLE 3.3.8 » THE COLLAGE OF Ap; ([LURO9, REMARK 2.3.1.1])

If p is the constant functor Ap: D°P X C — Sets with value pt, then Coll(p) is
thejoin C x D of Cand D of 22.

PROPOSITION 3.3.9 » PROPERTIES OF COLLAGES

Letp: C > D bea profunctor.

1. Functoriality. The assignmentp +— Coll(p) defines a functor
Collc,p : Prof(C, D) — Cats;;(C, D),
where

- Action on Objects. For each p € Obj(Prof(C, D)), we have

def

[Coll](p) = Coll(p);

- Action on Morphisms. For each p, q € Obj(Prof(C, D)), the action on
Hom-sets

Collp,: Nat(p,q) — Fun;, (Coll(p), Coll(q))

of Coll at (p, q) is the function sending a natural transformation
a: p = qtothe functor

Coll(2): Coll(p) —> Coll(q)

over | where
- Action on Objects. For each X € Obj(Coll(p)), we have

def .

[Coll(2)](X) = X

- Action on Morphisms. Foreach X, Y € Obj(Coll(p)), the action
on Hom-sets

Coll(@) xy - Homcoli(p) (X, Y) — Homcoyi(q) ([Coll(«) 1(X), [Coll(2)](Y))

dghomColl(q) (X))
of Coll(a) at (X, Y) is defined as follows:
- IfX,Y € Obj(C) or X, Y € Obj(D), then we have

def

Coll(a)x y(f) = f
foreachf € Homcoli(p) (X, Y).
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- If X € Obj(C) and Y € Obj(D), then

CO”(O!)X,y: Homcoli(p) (X,Y) — HomCO”(q)(X, Y)

def def
fp))/( ,eqi(
is defined by

Coll(a)yy (f) = &

- IfY € Obj(C) and X € Obj(D), then we have

def

Coll(a) .y () £ id.

2. Collages as Lax Colimits. We have an isomorphism of categories

Coll(p) = colim® (p),
functorial in p, where the above lax colimit is taken in the bicategory Prof.
3. Profunctors vs. Collages. We have an equivalence of categories

(Coll 4T):  Prof(C,D) -+ Catsyy,
kr/

whereT: Cats;) — Prof(C, D) is the functor sending a functor & —
| to the profunctor

rp:C—+ D

given on objects by
T(p) = Homg (4, B)

foreach A, B € Obj(&).

"Here Cats/| (C, D) is the category defined as the pullback

def
Cats/ (C, D) =pt X Cats X t,
fl ( ) s [C],Cats,fiby A fiby,Cats,[D] o
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asin the diagram
Cats// (C,D)

7N

Cats;; X pt t x Cats
/(Catsp P Cats l

P WARN

Cats/, pt.

& /b[o] ﬁb& A]

Cats Cats

PROOF 3.3.10 » PROOF OF PROPOSITION 3.3.9

Item 1: Functoriality

Omitted.

Item 2: Collages as Lax Colimits

See [Sch+17, Proposition 2.30].
Item 3: Profunctors vs. Collages

m

See [nLab23b, Proposition 2.4].

3.4 Properties of Prof

PROPOSITION 3.4.1 » PROPERTIES OF THE BICATEGORY OF PROFUNCTORS

Let C and D be categories.

1. Self-Duality. The bicategory Prof is self-dual: we have a biequivalence of
bicategories

(=)°P: Prof — Prof°P
where
- Action on Objects. The functor (—)°P sends categories to their oppo-
sites;

- Action on 1-Morphisms. The functor (—)°P sends profunctors to itself
under the identification

def

Prof(C, D) = Fun(D°P x C, Sets),
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= Fun(C x D°P, Sets),

def

= Prof(D°P, C°P);

- Action on 2-Morphisms. The functor (—)°P sends natural transforma-
tions between profunctors to themselves.

. Relation to Cats. The co/representable profunctor constructions of Defini-
tions 3.3.3 and 3.3.5 define embeddings of bicategories

Cats®P < Prof,
Cats® <« Prof.

. Equivalences in Prof and Cauchy Completions. Every category is equivalent to
its Cauchy completion in Prof.

. Equivalences in Prof. The following conditions are equivalent:

(@) The categories C and D are equivalentin Prof.
(b) The categories PSh(C) and PSh(D) are equivalentin Catsj.

(c) The Cauchy completions of C and D are equivalentin Cats;.

. Adjunctions in Prof. Let C and D be categories. The following data are
equivalent:

(@) Anadjunctionin Prof from C to D.
(b) Afunctor from C to the Cauchy completion DofD.
(©) Asemifunctor from C to D.

. AsaKleisli Bicategory. We have a biequivalence of bicategories
Prof = FreePsAlgpg;,,

where PSh is the presheaf category relative pseudomonad of [Fio+18, Ex-
ample3.9].

. Closedness. The bicategory Prof is a closed bicategory, where given a pro-
functorp: C - D and acategory X:

- Right Kan Extensions. The right adjoint

Rany: Rel(C,X) — Rel(D, X)



https://ncatlab.org/nlab/show/semifunctor
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to the precomposition functor p*: Rel(D,X) — Rel(C,X) is
given by

Ran,(q) dzef/ Sets(p;,q;)
AeC

foreach q € Rel(C, X).
- Right Kan Lifts. The right adjoint to the postcomposition functor

Rift,: Rel(X, D) — Rel(X,C)

to the postcomposition functor p,: Rel(X,C) — Rel(X, D) is
given by

Rift, (q) & / Sets(p”, o”, |
BeD

foreach q € Rel(X, D).

8. Un/Straightening for Profunctors: Two-Sided Discrete Fibrations. We have an
equivalence of categories

Prof(C, D) = DFib(C, D).

PROOF 3.4.2 » PROOF OF PROPOSITION 3.4.1

Item 1: Self-Duality
See [Lor21, Proposition 5.3.1].
Item 2: Relation to Cats

See [Lor21, Section 5.2].

Item 3: Equivalences in Prof and Cauchy Completions

See [Bor94a, Theorem 7.9.4].

Item 4: Equivalences in Prof

See [Bor94a, Theorem 7.9.4].

Item 5: Adjunctions in Prof

Omitted.

Item 6: As a Kleisli Bicategory
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See [Fio+18, Example 4.2].
Item 7: Closedness

Omitted.

Item 8: Un/Straightening for Profunctors: Two-Sided Discrete Fibrations

See [Rie10, Theorem 2.3.2] =

4 Monomorphisms

4.1 Foundations

Let C be a category.

DEFINITION 4.1.1 » MONOMORPHISMS

A morphismm: A — B of C is a monomorphism if for every commutative'
diagram of the form

C —= A—"> B,

we havef = g.

"Thatis,withmof=mo g.

EXAMPLE 4.1.2 » MONOMORPHISMS IN Sets

Letf: A — Bbea function. The following conditions are equivalent:

1. The function f is injective.

2. The function f is a monomorphism in Sets.

PROOF 4.1.3 » PROOF OF EXAMPLE 4.1.2

Suppose thatf isa monomorphism and consider the following diagram:

[x] f
{*} —3 A —— B,
[yl

where [x] and [ y] are the morphisms picking the elements x and y of A. Then
f(x) =f(y)ifffo[x] =fo[y],implying [x] = [y],andhencex = y. Therefore
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f isinjective.

Conversely, suppose thatf isinjective. Proceeding by contrapositive, we claim
thatgivenapairofmapsg, h: C —3 Asuchthatg # h,thenfog # foh. Indeed,
as g and h are different maps, there exists must exist at least one elementx € C
such that g(x) # h(x). Butthen we have f(g(x)) # f(h(x)), asf is injective.
Thusf o g # f o h,and we are done. =

PROPOSITION 4.1.4 » PROPERTIES OF MONOMORPHISMS

Let C be a category with pullbacksandf: A — B beamorphismof C.

1. Characterisations. The following conditions are equivalent:

(@) The morphism f isa monomorphism.
(b) Foreach X € Obj(C), the map of sets

fs: Homses(X, A) — Homseis (X, B)
is injective.
(c) The kernel pair of f is trivial, i.e. we have

d
M oa
|

L

AXpA=A, idy

e

f

2. Monomorphisms vs. Injective Maps. Let

- C be a concrete category;
. %=1 C —> Sets be the forgetful functor from C to Sets;

- f: A— BbeamorphismofC.
If = preserves pullbacks, then the following conditions are equivalent:

(@) The morphism f isa monomorphism.

(b) The morphism f is injective.

3. Stability Properties. The class of all monomorphisms of C is stable under
the following operations:
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(@) Composition. If f and g are monomorphisms, thensoisg o f.

(b) Pullbacks. Let
AXcB — B
-
m" m
A—— C

beadiagramin C. If misa monomorphismin C, thensoism’.

4. Morphisms From the Terminal Object Are Monomorphisms. If C has a terminal
object ¥, then every morphism of C from k¢ is a monomorphism.

TConversely, if g o f isa monomorphism, thensoisf.

PROOF 4.1.5 » PROOF OF PROPOSITION 4.1.4

Item 1: Characterisations
The equivalence between Items (a) and (b) is clear. We claim that Items (a) and (c)
are equivalent:

1. Item (a) = Item (c): Suppose thatf isa monomorphism. Then A satisfies
the universal property of the pullback:

N
ar o~
\A

idg

|

A

I

A —— B.
f

2. Item (c) = Item (a): Supposethat A = A xp Aandletg,h: C —3 Abe
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a pair of morphisms. Consider the diagram

ida

|

-

A
— B.
f

The universal property of the pullback says that there exists a unique mor-
phism C — A making the diagram

N

A, 4
_
ida f
A— B
f

commute, which implies g = h. Therefore, f is a monomorphism.

Item 2: Monomorphisms vs. Injective Maps

Assume thatf is injective. As the forgetful functor from C to Sets is faithful, we
see that Proposition 4.2.2 together with 22imply that f is a monomorphism.

Conversely, assume that f is a monomorphism. As F preserves pullbacks, it
also preserves kernel pairs. By ??, we see that F preserves monomorphisms. Thus
Fyisamonomorphism, and hence is injective by 2.

Item 3: Stability Properties

Letf,g: X =3 A X¢ B be two morphisms such that the diagram

X —= AxcB " A
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commutes. It follows that the diagram

X
pry of

AXcB —p2—> B

| 4

i’
!
A

mog

C

also commutes. From the universal property of the pullback, it follows that there
must be precisely one morphism from X to A X¢ B making the above diagram
commute. Thus f = gandm’ isa monomorphism.

Item 4: Morphisms From the Terminal Object Are Monomorphisms

Clear. =

4.2 Monomorphism-Reflecting Functors

DEFINITION 4.2.1 » MONOMORPHISM-REFLECTING FUNCTORS

Afunctor F: C — D reflects monomorphisms if, for each morphism f of C,
whenever Fy isa monomorphism, sois f.

PROPOSITION 4.2.2 » FAITHFUL FUNCTORS REFLECT MONOMORPHISMS

Let F: C — D beafunctor. If F is faithful, then it reflects monomorphisms.

PROOF 4.2.3 » PROOF OF PROPOSITION 4.2.2

Letf: A — Bbeamorphism of C and suppose that Fy: F4 — Fpisamono-
morphism. Let g, h: B == C be two morphisms of C suchthatgof =hof.As
Fis faithful, we must have

Fg o Fr = Fgof = Fyof = Fy o Iy,
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butas Fy isa monomorphism, it must be that F, = Fj,. Using the faithfulness of
F again, we see that g = h. Therefore f is a monomorphism. =

4.3 Split Monomorphisms
Let C be a category.

DEFINITION 4.3.1 » SPLIT MONOMORPHISMS

A morphismf: A — Bof C is a split monomorphism' if there exists a mor-
phismg: B — Aof 8 such that?

gof =ida.

" Further Terminology: Also called a section, or a split monic morphism.

2@Waming: There exist monomorphisms which are not split monomorphisms, e.g. Z/2 — Z/4
inRing.

PROPOSITION 4.3.2 » PROPERTIES OF SPLIT MONOMORPHISMS
Let C be a category.

1. Split Monomorphisms are Monomorphisms. 1f m is a split monomorphism,
then m isa monomorphism.

Item 1: Split Monomorphisms are Monomorphisms

PROOF 4.3.3 » PROOF OF PROPOSITION 4.3.2

Letm: A — Bbeasplit monomorphismof C, lete: B — Abe a morphism
of C with
eom=idy,

andletf,g: C =3 A be two morphisms of C such that the diagram
f

C—=3 A—2>B

commutes. Then we have

-
I

idg of
(com)of




—eo(mof)
o (mog)
—(com)og
=idgog
=g

showing m to be a monomorphism. =

5 Epimorphisms

5.1 Foundations

Let C be a category.

DEFINITION 5.1.1 » EPIMORPHISMS

A morphism f: A — B of C is an epimorphism if for every commutative’
diagram of the form
f

g
A—— B —=3C,

we have g = h.

"Thatis,withgof =hof.

EXAMPLE 5.1.2 » EPIMORPHISMS IN Sets
Letf: A — Bbea function. The following conditions are equivalent:
1. The functionf is injective.

2. The function f is an epimorphism in Sets.

PROOF 5.1.3 » PROOF OF EXAMPLE 5.1.2

Suppose that f issurjective and let g, h: B =3 C be morphismssuchthatgof =
hof.Thenforeacha € A, we have

8(f(a) = h(f(a)),
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but this implies that
8(b) = h(b)

foreach b € B, asf is surjective. Thus g = hand f is an epimorphism.
To prove the converse, we proceed by contrapositive. So suppose that f is not
surjective and consider the diagram

f

g
A— B —= C,

where h is the map defined by h(b) = 0 foreach b € Band g is the map defined
by
1 ifb e Im(f),
b =
g(b) {0 otherwise.

Thenhof =gof,ash(f(a)) =1 = g(f(a)) foreacha € A. However, for any
b € B\ Im(f), we have
g(b) =0#1=h(b).

Therefore g # handf is notan epimorphism. =

PROPOSITION 5.1.4 » PROPERTIES OF EPIMORPHISMS

Let C be a category.

1. Characterisations. Let C be a category with pullbacksandf: A — Bbea
morphism of C. The following conditions are equivalent:

(@) The morphism f is an epimorphism.
(b) Foreach X € Obj(C), the map of sets

f*: HomSets(B’X) = HomSets(ArX)
is injective.

(c) The cokernel pairoff is trivial, i.e. we have

o]

—

-

B
Bl[,B=8B ’
B

— A
f
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2. Epimorphisms vs. Surjective Maps. Let

- C be a concrete category;
- %1 C —> Sets be the forgetful functor from C to Sets;

- f: A—> BbeamorphismofC.
If = preserves pushouts, then the following conditions are equivalent:

(@) The morphism f isa epimorphism.

(b) The morphism f is surjective.

3. Stability Properties. The class of all epimorphisms of C is stable under the
following operations:

(@) Composition. If f and g are epimorphisms, thensois g o f.

(b) Pushouts. Let

AllcB «— B

-
e” ’e
A——C

be adiagraminC. If misan epimorphismin C,thensoise’.

4. Morphisms to the Initial Object Are Monomorphisms. If C has an initial object
D¢, then every morphism of C to ¢ is a epimorphism.

TConversely, if g o f isa epimorphism, thenso is g.

PROOF 5.1.5 » PROOF OF PROPOSITION 5.1.4

This is dual to Proposition 4.1.4. =

5.2 Regular Epimorphisms

PROPOSITION 5.2.1 » PROPERTIES OF REGULAR EPIMORPHISMS

Let C be a category.
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1. Stability Under Pullbacks. Consider the diagram
AXcB — B
|
e" 4
A—— C

inC. Ifeis aregularepimorphism, thensoise’.

PROOF 5.2.2 » PROOF OF PROPOSITION 5.2.1
Epimorphisms Need Not Be Stable Under Pullback.

Regular Epimorphisms Are Stable Under Pullback.

2

5.3 Effective Epimorphisms

Let C be a category.

DEFINITION 5.3.1 » EFFECTIVE EPIMORPHISMS

An epimorphismf: A — Bof C is effective if we have an isomorphism

B = CoEq(Axg A =3 A).

5.4 Split Epimorphisms

Let C be a category.

DEFINITION 5.4.1 » RETRACTIONS

Amorphismf: A — BofCisaretraction' ifthereisanarrowg: B — Asuch
thatf o g = idp.

" Further Terminology: Also called a split epimorphism.




PROPOSITION 5.4.2 » PROPERTIES OF SPLIT EPIMORPHISMS

| o
O

Letf: A — BbeamorphismofC.

1. Every split epimorphism is an epimorphism.’

1@Waming: There are epimorphisms which are not split epimorphisms, however, e.g. Z < Z/2.

PROOF 5.4.3 » PROOF OF PROPOSITION 5.4.2

This is dual to 22. =

6 Adjunctions

6.1 Foundations

Let C and D be two categories.

DEFINITION 6.1.1 » ADJUNCTIONS

An adjunction’ is a quadruple (F, G, 7, ¢) consisting of
1. AfunctorF: C — D;
2. AfunctorG: D — C;
3. Anatural transformation7: idc = G o F;
4. Anatural transformatione: F o G = idgp;
such that we have equalities

id

p % .9 p % .
fH
F 'ﬁ\G |€| F = F RiCl}: F
n
o\ \
CT)C C ido C
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c—% .¢ c—%* .¢
I}
© ||\F ﬁ/ = % b
€ G G
AN N
D idp D D idp D

of pasting diagrams in Cats,.”

" Further Terminology: We also call (G, F) an adjoint pair, F a left adjoint, G a right adjoint, 1 the
unit of the adjunction, and ¢ the counit of the adjunction.
2Equivalently, the diagrams

idp ¥y 1*idg

FoGoF G =——————— GoFoG

exid idg e 6.1.1)
idp F idg

)

called the left and right triangle identities, commute, or, again equivalently, for each A € Obj(C)
and each B € Obj(D), the diagrams

Fny Gy
FA —_—> FGFA GB —_—> GFGB
idr, fFa idg Gep
Fa @
commute.
EXAMPLE 6.1.2 » EXAMPLES OF ADJUNCTIONS
Here are some examples of adjunctions.
1. We have a triple adjunction
-1
S LN\
([-14t4-]): Re—:—17Z
~* 7
-]

where Z and R are viewed as poset categories and ¢ : Z < Ris the canoni-
cal inclusion.
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PROPOSITION 6.1.3 » PROPERTIES OF ADJUNCTIONS

letF,L: C =23 D and G,R: D —= C be functors.

1. Characterisations. The following conditions are equivalent:

(@) The pair (L, R) is an adjoint pair.

(b) We have a natural isomorphism of (pro)functors’
hL = hR.

(c) Foreach A € Obj(C) and each B € Obj(D), we have an isomor-
phism

Homz) (LA, B) = Homc (A, RB)

and the square below-left commutes iff the square below-right com-

mutes:
L,— B A—L Ry
-7
Ly — B’ A’ — Rp.

(d) Foreachsmall category K, we have an adjunction

L,
—

(L« 4R.): Fun(KX,C) + Fun(K,D)

— —
R,

as witnessed by a natural isomorphism
Nat(L o F,G) = Nat(F,R o G)
F
C bi. K g >C
F L — U
x7 1 o DSk
G

\_/

natural in K —F—> Cand?(—G—> D.
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(e) Foreach locally small category &, we have an adjunction

/Ii*\
(R*4L%): Fun(C,&)_ +  Fun(D,&)

~—

=

as witnessed by a natural isomorphism

Nat(F o R,G) = Nat(F,G o L)

bij.
D Vv & D
G
. F G
naturalinC— Eand D — &.

2. Uniqueness. If G admits left/right adjoints F| and F,, then F| = F;.*

3. Stability Under Composition. If F; 4 Gy and F, 4 Gy, then (F, o Fy) H
(G20Gy):

F E FyoF,
— — —

C o D L & ~ C + &
—— — —
G] G2 GzOG]

4. Interaction With Co/Limits. The following statements are true:

(a) Left Adjoints Preserve Colimits (LAPC). If F is a left adjoint, then F
preserves all colimits thatexistin C.

(b) Right Adjoints Preserve Limits (RAPL). If G is a right adjoint, then
G preserves all limits that existin C.

5. Interaction With Faithfulness. Let (F, G, 7, ¢€) be anadjunction. The following
conditions are equivalent:

(@) The functor F is faithful.
(b) Foreach A € Obj(C), the morphism

na: A— Gp,

isa monomorphism.
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Dually, the following conditions are equivalent:

(@) The functor G is faithful.
(b) Foreach A € Obj(C), the morphism

€A FGA — A
is an epimorphism.

6. Interaction With Fullness. Let (F, G, 7, ¢) be an adjunction. The following
conditions are equivalent:

(@) The functor Fis full.
(b) Foreach A € Obj(C), the morphism

na: A— Gp,
is a splitepimorphism.
Dually, the following conditions are equivalent:

(@) The functor G is full.
(b) Foreach A € Obj(C), the morphism

€a: Fg, — A
is a split monomorphism.

7. Interaction With Fully Faithfulness I. Let (F, G, 7, ¢) be an adjunction. The
following conditions are equivalent:

(@) The functor F is fully faithful.
(b) Foreach A € Obj(C), the morphism

nA: A—> GFA

is an isomorphism.
(c) The following conditions are satisfied:

(i) The natural transformation
idpxn*idg: FoG=FoGoFoG

is a natural isomorphism.
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(ii) The functor F is conservative.
(iii) The functor G is essentially surjective.

Dually, the following conditions are equivalent:

(@) The functor G is fully faithful.
(b) Foreach A € Obj(C), the morphism
€a: Fg, — A
isan isomorphism.
(c) The following conditions are satisfied:
(i) The natural transformation
idg*7*idp: GoF= GoFoGoF

is a natural isomorphism.
(i) The functor G is conservative.
(iii) The functor F is essentially surjective.

8. Interaction With Fully Faithfulness 1. Let (F, G, 3, ¢) be an adjunction.

(@) If G o Fisfully faithful, thensois F.
(b) IfF o Gisfully faithful, thensois G.

"That s, the following conditions are satisfied:
(i) Bijection. Foreach A € Obj(C) and each B € Obj(D), we have a bijection

Homg (L4, B) = Home (A, Rp).
(ii) Naturalityin D. For each morphism g: B — B’ of D, the diagram

HomD (LA,B) ****** oooooo > HOI’T'IC (A,RB)
idp idy
hg A hRg
Homg (Ly, B") -----¢-----> Homg (A, Rp)
commutes.
(iii) Naturalityin C. For each morphismf: A — A’ of C, the diagram
HomD(LA,B) ****** Fbooooo > Homc (A, RB)
Ly f
. h'dRB
Homgp (Lys, B) -----=¢-----> Hom¢ (A", Rp)

commutes.
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2Moreover, writing 8 : F, = F, for this isomorphism, the diagrams

idc == GoF FoG == idyp
3 idg %0 fxidg f
n €
GoF' F oG

commute; see [Rie17, Proposition 4.4.1].

PROOF 6.1.4 » PROOF OF PROPOSITION 6.1.3

Item 1: Adjunctions Via Hom-Functors

See [Rie17, Lemma 4.1.3 and Proposition 4.2.6].

Item 2: Uniqueness of Adjoints

This follows from the Yoneda lemma (Theorem 7.2.4) and its dual (Theorem 8.2.4).

Item 3: Stability Under Composition
See [Rie17, Proposition 4.4.4].

Item 4: Interaction With Limits and Colimits, Item (a)

"We prove Item (a) only, as Item (b) follows by duality (Limits and Colimits, Item 4
of Proposition 1.6.4). Indeed, let F: C — D be a functor admitting a right
adjoint G: D — C. Foreach Y € Obj(9D), we have isomorphisms

Homg (Feolim(n), Y) = Homg (colim(D), Gy)
= lim(Homgp (D, Gy))

(Limits and Colimits, Item 11 of Proposition 1.6.4)
= lim(Homgp (Fp,Y))
= Homg (colim(Fp),Y),
(Limits and Colimits, Item 11 of Proposition 1.6.4)
naturalin Y € Obj(D). The result then follows from Categories, 2.
Item 4: Interaction With Limits and Colimits, Item (b)
This is dual to Item (a).

Item 5: Interaction With Faithfulness

See [Rie17, Lemma 4.5.13].

Item 6: Interaction With Fullness

See [Rie17, Lemma 4.5.13].
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Item 7: Interaction With Fully Faithfulness |

See [Rie17, Lemma 4.5.13] and [Lor21, Proposition A.5.9].

Item 8: Interaction With Fully Faithfulness I

See [de]20, Tag @FWV], [Lor21, Proposition A.5.9], or [Low15, Propositions A.l.2 and
A.l3]. =

"Reference: See [Rie17, Theorem 4.5.2].

6.2 Existence Criteria for Adjoint Functors

Let C and D be categories.

THEOREM 6.2.1 » EXISTENCE CRITERIA FOR ADJOINT FUNCTORS

letF: C — Dand G: D — C be functors.
1. Via Comma Categories. The following conditions are equivalent:

(@) The functor F has a rightadjoint.

(b) Foreachs € Obj(D), the comma category F | s = fc hf* hasa
terminal object.

Dually, the following conditions are equivalent:

(@) The functor G hasa leftadjoint F.

(b) Foreachs € Obj(C), the comma categorys | G = /C hi, hasan
initial object.

Moreover, when these conditions are satisfied, we have isomorphisms

Fa= lim (x

A —>Gx( )

Gp = colim (x),
Fx—>GB

naturalin A € Obj(C) and B € Obj(D).
2. The General Adjoint Functor Theorem’. Suppose that

(@) The category D hasall limits and F commutes with them.
(b) The category C is complete and locally small.
(c) The Solution Set Condition. For each X € Obj(D), there exist
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(i) AsmallsetlI;
(i) Aset{A;};c;of objectsof C;
(i) Aset{fi: X — Ga,} of morphisms of D;

such that, foreach i € I and each morphismf: X — Gy, there
exists a morphism ¢;: A; — A of C together with a factorisation

: Gy,
X —f g, —*

I 0
f

Then F has a left adjoint.
3. The Special Adjoint Functor Theorem. Suppose that

(@) The category D has all limits and F commutes with them.
(b) The category C is complete, locally small, and well-powered.

(c) The category C hasasmall cogenerating set.
Then F has a left adjoint.
4. Freyd’s Representability Theorem |. Let F: C — Sets be a functor. If*

(@) The functor F commutes with limits;
(b) The category C is complete and locally small;

(©) The Solution Set Condition. There exists a set ® C Obj(C) such that,
foreach ¢ € Obj(C), there exist

- sed;
- )€ FS;
- fi1s — cinHomges (s, ¢);

such that Fy(,) = x;
then Fis representable.
5. Freyd’s Representability Theorem II?. Let F: C —> Sets be a functor. If

(@) The functor F commutes with limits;
(b) There exist

- Acollection {x,},c; of object of C;
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- Foreacha € I, anelementf, of F,,

such that foreach y € Obj(C) and each g € F,, there exists some
a € I'and some morphism ¢: x; — y suchthat Fy(f,) = g;

then F is representable.
6. Co/Totality. Suppose that

(@) The category C is locally small and cototal and D is locally small.

"Further Terminology: Also called Freyd’s adjoint functor theorem.

2Anice application of this theorem is given in [MSE 276630], where itis used to abstractly show
that Cats is cocomplete, avoiding the explicit construction of coequalisers in Cats given in 2?.

3This is the statement of Freyd’s representability theorem as found in [de] 20, Tag @4HN].

PROOF 6.2.2 » PROOF OF THEOREM 6.2.1
Item 1: Via Comma Categories

We claim that Items (a) and (b) are indeed equivalent:’

- Item (a) = Item (b): Let F be a left adjoint of G. Then
sLG= [ hy

= [ k%,

where hy, is corepresentable by F;. By Fibred Categories, Item 10 of Propo-
sition 9.4.1, it follows that the component 7,: s — Gp, of the unit of the
adjunction F 4 G atsisaninitial objectofs | G.

- Item (b) = Item (a): Foreachs € Obj(D), write ;: s — G, foran
initial object of s | G. This gives us a map of sets

F: Obj(C) —— Obj(D)
s —— F..

We now extend this map to a functor: given a morphismf: s — s’ of C,
we define Fr: F; — Fy to be the unique morphism making the diagram

f /
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commute (which exists by the initiality of 75). By the uniqueness of these

Moreover, we also obtain a natural transformationn: idc = G o F. We
now define a natural transformation

¢: Homgp(F-,b) = Hom¢(—, Gy)
consisting of the collection

{¢s,b : Homp (Fs, b) = Homc (s, Gb)}seobj(c)’

where ¢, is the map sending a morphism g: F; — b to the composition

1 Gy
N 2 GF

s

Gyp.

By the existence and uniqueness of morphisms from 7, to any other object
s — Gypins | G, itfollows that the maps ¢, are bijective, showing F to
be a leftadjoint of G.

Item 2: The General Adjoint Functor Theorem
See [Rie17, Theorem 4.6.3].
Item 3: The Special Adjoint Functor Theorem

See [Rie17, Theorem 4.6.10].

Item 4: ’s Representability Theorem |

See [Rie17, Theorem 4.6.15].

Item 5: ’s Representability Theorem ||
See [de]20, Tag @4HN].

Item 6: Co/Totality

m

Omitted.

TReference: [Rie17, Lemma 4.6.1].

morphisms, it follows that the assignment s +— F; is indeed functorial.

6.3 Adjoint Strings

To avoid clutter, in this section we will abbreviate long compositions of functors. For

instance, we write f] o f o f3 o f4 as fif2f3fa. Let C and D be categories.
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DEFINITION 6.3.1 » ADJOINT STRINGS

An adjoint string of length ' is an n-tuple (f1, .. ., f,) of functors between C and
D such that

fn ) fn+1

foreachn € {1,...,n - 1}.

" Further Terminology: Also called an adjoint n-tuple.

PROPOSITION 6.3.2 » PROPERTIES OF ADJOINT TRIPLES

Let C and D be categories.

1. Adjoint Triples as Adjunctions Between Adjunctions. An adjoint triple is equiv-
alently an adjunction (F 4 G) 4 (G 4 H) between adjunctions. FIXME
[nLab23a].

2. Adjunctions Induced by an Adjoint Triple. A triple adjunction (f1, f2, f3) gives
rise to two more adjunctions

f2fi
(fi 112f3): C C C
f2f3

and
fif2

— >

(fifz4fsf2): D+ D
f3f2

where f>f1 and f»f3 are monads in C and ff2 and f3f, are comonads in D.

"[nLab23a] suggests writing

fi 4 f

4 L

4 f

to denote the adjunctions (f; 4 f2 4 f3) and (fif2) 4 (f2f3) simultaneously; the first horizontally
and the latter vertically.

PROOF 6.3.3 » PROOF OF PROPOSITION 6.3.2

Item 1: Adjoint Triples as Adjunctions Between Adjunctions

Omitted.
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Item 2: Adjunctions Induced by an Adjoint Triple

Omitted.

=

Let C and D be categories.

(fi 412 413 - fa) gives rise to two adjoint triples

f2f1

)

(f2fi A f2f3 4 faf3): C <hfsi— C

(

faf3

and
fif2

)

(il A2 4f3fa): D «f— D

(

f3fa
and six adjunctions

fif2f3

(hfafs A fafsf): C S D (f3f2f1 A faf3fa):
fafsf2
f3f2fi
o
faf3fa

f2f3f2fi
(hfshfiAbfffs): €« > C (Bhfif2 A Bhff):

\_/
f2f3faf3
faf2fif2
c_ i ¢
\_/
faf2f3fa

PROPOSITION 6.3.4 » PROPERTIES OF ADJOINT QUADRUPLES

1. Adjunctions Induced by a Quadruple Adjunction. An adjoint quadruple
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f2fif2f3
(hhbfs A fafsbf): D+ D (fifafsfa A Bfafaf)

S~
faf3faf3
fif2f3f2
D LD
S~
fafafaf2
where fof 1, fof3, faf3, ff3f2f1, f2f31f3, f3f2f1f2, and f3f>f3f4 are monads in

C andfifa, f3fa, f3fs. fofifof3. fafsfaf3. fif2f3f2, and f3faf3f2 are comonads
inD.

PROOF 6.3.5 » PROOF OF PROPOSITION 6.3.4

Item 1: Adjunctions Induced by a Quadruple Adjunction

Omitted. =

PROPOSITION 6.3.6 > ADJUNCTIONS INDUCED BY AN ADJOINT STRING OF LENGTH

n

Let(fi4---4fn): C : D be an adjoint string.
1. Foreachk € Nwith1 < k < n — 2, we have 2 induced adjoint strings

fifa+ fo-kfn-t+1 A fo-s2fo-tr1 - f3f2 A A fem1fe - fo2fn-1 A fafu-1 - frs1fe
fa—kttfn—t = foft A f2f3 +  fackatfa—ke2 3 - A famtfo-2** fofe=1 A fefer1 - - fu=1fn

of lengthn — k.
2. Inductively applying Item1to the induced adjointstrings, we get (including

the 2 adjoint strings of Item 1) 2 - 3"~*~1 adjoint strings of length k', fora
grand total of

=
—_

1
20k —1)-3"%1 = c(3"+3)—n

Eend
||

2
adjunctions.?
3. In particular:

(@) Anadjointtriple induces 2 adjoint pairs.

(b) Anadjointquadruple induces
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- 2 adjointtriples,
- 6 adjoint pairs,
for a grand total of 10 adjunctions.
() Anadjointquintuple induces
- 2 adjoint quadruples,
- 6adjointtriples,
- 18 adjoint pairs,
for a grand total of 36 adjunctions.
(d) Anadjointsextuple induces
- 2 adjoint quintuples,
- 6adjointquadruples,
- 18 adjointtriples,
- 54 adjoint pairs,
fora grand total of 116 adjunctions.
(e) Anadjointseptuple induces

- 2 adjoint sextuples,
- 6adjoint quintuples,
- 18 adjoint quadruples,
- 54 adjointtriples,
- 162 adjoint pairs,
for a grand total of 358 adjunctions.

"These need not be unique.
2E.g. we have 4 adjoint strings of length n — 2, such as

f2fsfaft 4 f2fafafs 4+ A fefestfefe—1 A fefestfer2fesr 4+ A fu—afu—1fa-2fn-1 4 fa—2fn-1fafa-1.

Omitted.

PROOF 6.3.7 » PROOF OF PROPOSITION 6.3.6

B

6.4 Reflective Subcategories

Let C be a category.
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DEFINITION 6.4.1 » REFLECTIVE SUBCATEGORIES

A subcategory Cy of C is reflective if the inclusion functori: Cy < C of Cy into
C admitsaleftadjointL: C — Cp."

"Further Terminology: The functor L is called the reflector or localisation of the adjunction L + i.

EXAMPLE 6.4.2 » EXAMPLES OF REFLECTIVE SUBCATEGORIES

Here are some examples of reflective subcategories

1. CHaus < Top ([Rie17, Example 4.5.14, (i)]). The category CHaus is a re-
flective subcategory of Top, as witnessed by the adjunction

ﬂ
BA0): Top_ < . CHaus,
of Topological Spaces, 22 of 22.

2. CMon < Mon. The category CMon is a reflective subcategory of Ab, as
witnessed by the adjunction

( )ab
((—)ab 4 [): Mon_< CMon
of Monoids, ?? of 22.

3. Ab < Grp ([Rie17, Example 4.5.14, (ii)]). The category Ab is a reflective
subcategory of Grp, as witnessed by the adjunction

((—)abﬂ): Grp + _Ab
of Groups, ?? of 22.

4. Abf — Ab ([Rie17, Example 4.5.14, (iii)]). The full subcategory Abtf of
Ab spanned by the torsion-free abelian groups is reflective in Ab. This is
witnessed by the adjunction

(_ tf

((—)tf 4 z): Ab: Abt,

where (—)tf: Ab —> Abtfis the functor defined on objects by sending an
abelian group A to the quotient A/Tors(A), where Tors(A) is the torsion
subgroup of A.
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5. Modg < Modg ([Rie17, Example 4.5.14, (iv)]). Let ¢: R — S be a mor-
phism of rings. Then ¢* is full iff ¢ is an epimorphism, in which case the
adjunction

S®r(-)
=

(S®r (=) 4¢"): Mods 1+ Modg
S~
pe
witnesses Modg as a reflective subcategory of Modp.

6. Shv(C) — PSh(C) ([Rie17, Example 4.5.14, (v)]). The category Shv(C) of
sheaves on asite C is a reflective subcategory of PSh(C), as witnessed by
the adjunction

(-)*
((—)#—H): PSh(C) = Shv(C),
of Sites, Section 5.5.

7. Cats < sSets ([Rie17, Example4.5.14, (v)]). The category Catsis areflective
subcategory of sSets, as witnessed by the adjunction

Ho
(Ho 4 N,): sSets 1 ' Cats
N,

of Quasicategories, Item 3 of Proposition 1.5.4.

PROPOSITION 6.4.3 » PROPERTIES OF REFLECTIVE SUBCATEGORIES

Let Cp be a reflective subcategory of C.

1. Characterisations. Let

L
(L 0): CSZ)

]
be an adjunction. The following conditions are equivalent:

(@) The functor is fully faithful.

(b) Thecounite: L ot = idp isa natural isomorphism.
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(c) The following conditions are satisfied:

() Themonad (to L,id, * ¢ xidp, ) associated to the adjunction
L 4 tisidempotent.
(i) The functoris conservative.
(iii) The functor L is essentially surjective.

(d) The functor L is the Gabriel-Zisman localisation of C with respect to
the class S given by

def

S ={f € Mor(C) | L(f) isanisomorphismin D}.

(e) The functor L is dense.

2. Interaction With Limits. The inclusion Cy < C creates all limits which exist
inC.

3. Interaction With Colimits. The category Cy admits all colimits that existin
C: givenadiagram D: I — Cyin Cy, if colim(i o D) exists in C, then
colim(D) exists in Cy and we have

colim(D) = L(colim(i o D)).

PROOF 6.4.4 » PROOF OF PROPOSITION 6.4.3

Item 1: Characterisations

See [CZ67, Proposition1.3] and [UImé8, Theorem 1.13].
Item 2: Interaction With Limits

See [Rie17, Proposition 4.5.15].
Item 3: Interaction With Colimits

m

See [Rie17, Proposition 4.5.15].

6.5 Coreflective Subcategories

Let C be a category.
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DEFINITION 6.5.1 » COREFLECTIVE SUBCATEGORIES

A subcategory Cj of C is coreflective if the inclusion functori: Cy < C of Gy
into C admitsarightadjointR: C — Cy.”

" Further Terminology: The functor L is called the coreflector or colocalisation of the adjunction
i4R.

7 TheYoneda Lemma

7.1 Presheaves
Let C be a category.

DEFINITION 7.1.1 » PRESHEAVES ON A CATEGORY

A presheafon C isa functor & : C°P — Sets.

DEFINITION 7.1.2 » THE CATEGORY OF PRESHEAVES ON A CATEGORY

The category of presheaves on C is the category PSh(C) defined by

def

PSh(C) = Fun(C®P, Sets).

REMARK 7.1.3 » UNWINDING DEFINITION 7.1.2

In detail, the category of presheaves on C is the category PSh(C) where
- Objects. The objects of PSh(C) are presheaves on C;

- Morphisms. Amorphism of PSh(C) from F to G isa natural transformation
a: F = g;

- Identities. Foreach F € Obj(PSh(C)), the unit map
kPO pt — Nat(F, F)
of PSh(C) at F is defined by

. [PSh(C) def .
id © d=f|d5,/'

- Composition. Foreach &, G, # € Obj(PSh(C)), the composition map

°§,Sgh,(;(2;)i Nat(G, #) x Nat(¥#, ) — Nat(F, #)
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of PSh(C) at (#, ¢, #) is defined by

PSh(C) _ def
°yoH X Boa.

7.2 Representable Presheaves
Let C be a category, let U,V € Obj(C),and letf: U — V be a morphism of C.

DEFINITION 7.2.1 » THE REPRESENTABLE PRESHEAF ASSOCIATED TO AN OBJECT

The representable presheaf associated to U is the presheaf hy : C°P — Sets
on C where

- Action on Objects. For each A € Obj(C), we have

hy(A) £ Home (A, U);

- Action on Morphisms. For each morphismf: A — Bof C, theimage

hu(f): hu(B) —  hu(A)

—— N———
d:ei-lomc (BU) d:ilomg (AU)
of f by hy is defined by
hu(f) = f°.

DEFINITION 7.2.2 » REPRESENTABLE PRESHEAVES

Apresheaf . C°P — Setsisrepresentable if = hy forsome U € Obj(C).

"In such a case, we call U a representing object for .
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DEFINITION 7.2.3 » REPRESENTABLE NATURAL TRANSFORMATIONS

The representable natural transformation associated tof is the natural transfor-
mation ks : hy = hy consisting of the collection

hija: hu(A)  —  hy(A)

d d
:ei-lomc (AU) :ei—iomc (AV) A€Obj(C)

where
def

hf|A = f*

THEOREM 7.2.4 » THE YONEDA LEMMA

Let F: C°P — Sets be a presheaf on C. We have a bijection

Nat(ha, F) = Fy,
naturalin A € Obj(C), determining a natural isomorphism of functors

Nat(h_), F) = F.

PROOF 7.2.5 » PROOF OF THEOREM 7.2.4

The Natural Transformationev(_y: Nat(h_), F) = F

Letev(_y: Nat(h_),F) = F be the natural transformation consisting of the
collection
{eva: Nat(hy, F) — F(A)}acobi(c)

with

eva(a) = ax(idy)
foreacha: hy = F inNat(hs, F).
The Natural Transformation £(_y: & = Nat(h(_), ¥)

Let(_): F = Nat(h(-, F) be the natural transformation consisting of the
collection
{€a: F(A) — Nat(ha, F)} acobicc)
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where£4: F(A) — Nat(hy, F) is the map sending an element f of # (X) to
the natural transformation

EA,fZ hA = F
consisting of the collection

{(¢af)y: ha(U) — ‘rj(U)}AeObj(C)

where (£4¢),, 1 ha(U) — F(U) is the morphism given by

(Eaf)y: ha(U) F(U)
(h: U — A) —— Fh)(f)

foreachf: U — Ainhy(U).

Letf € F(X). We have

(6af)y(idv) = F (idv) (f),
=idy ) ()
= f

o) oevio) =idna(n.,,5)

Leta: hy = F € Nat(hy, F) and consider the diagram

h
Homc (A, A) ——— Home (A, X)
£a Ex

F(A) F(X)

F(f)

defined on elements by

ida f

u ——— F()(w) = £&x ().
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Thenitis clear that the natural transformation £ is determined by £4(id4) = u,
since we must have

Ex(f) = F(f)(w)
foreach X € Obj(C) and each morphismf: A — X of C. |

7.3 The Yoneda Embedding

DEFINITION 7.3.1 » THE COVARIANT YONEDA EMBEDDING

The covariant Yoneda embedding of C" is the functor?
&¢: C — PSh(C)
where

- Action on Objects. Foreach U € Obj(C), we have

def

& (U) = hy;

- Action on Morphisms. For each morphismf: U — V of C, the image
F(f): K(U) — &K(V)

of f by & is defined by

def

K (f) = hy.

"Further Terminology: Also called simply the Yoneda embedding.
2 Further Notation: Also written h(_y, or simply &.

PROPOSITION 7.3.2 » PROPERTIES OF THE YONEDA EMBEDDING

Let C be a category.

1. Fully Faithfulness. The Yoneda embedding is fully faithful !

2. Preservation and Reflection of Isomorphisms. Let A, B € Obj(C). The follow-
ing conditions are equivalent:

(@) Wehave A = B.
(b) We have hy = hp.




7.3 The Yoneda Embedding

92

() We have h* = hB.

3. Uniqueness of Representing Objects Up to Isomorphism. Let & : C°P — Sets
be a presheaf. If there exist objects A and B of C such that we have

ha = 5,
hg = F,
then A = B.
4. Asa Free Cocompletion: The Universal Property. The pair (PSh(C), &) con-

sisting of
- The category PSh(C) of presheaves on C;
- The Yoneda embedding & : C = PSh(C) of C into PSh(C);

satisfies the following universal property:

(ur) Given another pair (A, F) consisting of
- A cocomplete category A;
- A cocontinuous functor F: C — A;

. . 3! .
there exists a cocontinuous functor PSh(C) — A, unique up to
natural isomorphism, making the diagram

PSh(C)

commute, again up to natural isomorphism.

5. Asa Free Cocompletion: 2-Adjointness. We have a 2-adjunction

PSh
P

(PSh 41): Cats 1, Cats®mP,
~—

L

witnessed by an adjoint equivalence of categories®

Lan g
S

(Lang 4 &7): Fun®°™(PSh(C),D) + Fun(C, D),

—

y
natural in C € Obj(Cats) and D € Obj(Cats“°™P"), where
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- We have a functor
£ Fun®™(PSh(C), D) — Fun(C, D)

defined by
FL(F)EFo &,

i.e. by sending a functor F: PSh(C) — D to the composition
ES
¢ S PSh(C) - O
- We have a natural map
lang,.: Fun(C, D) — Fun®<"(PSh(C), D)
computed on objects by
AeD
[Lang (F)](F) e/ Nat(hy, F) © Fy

AeD
E/ gAOFA

foreach & € Obj(PSh(Q)).

"In other words, the Yoneda embedding is indeed an embedding.
2Inthissense, PSh(C) is theefree cocompletion of C (although the term “cocompletion”is slightly
misleading, as PSh(PSh(C)) % PSh(C)).

PROOF 7.3.3 » PROOF OF PROPOSITION 7.3.2
Item 1: Fully Faithfulness

Let A, B € Obj(C). Applying Theorem 7.2.4 to the functor hp (i.e. in the case
F = hp), we have

Hom¢ (A, B) = Nat(hy, hp).
Thus & is fully faithful.

Item 2: Preservation and Reflection of Isomorphisms

This follows from Item 1 and Proposition 2.1.7.

Item 3: Uniqueness of Representing Objects Up to Isomorphism

By composing the isomorphisms hy = F = hg, we geta natural isomorphism
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a: ha = hg. By Item 2, we have A = B.

Item 4: As a Free Cocompletion: The Universal Property

This is a rephrasing of Item 5.

Item 5: As a Free Cocompletion: 2-Adjointness

See [nLab23c, Proposition 2.1].

7.4 Universal Objects

DEFINITION 7.4.1 » UNIVERSAL OBJECTS

The universal object associated to a representable functor hy : C — D isthe
elementu € hy (U) satisfying the following universal property:’

(upP) Foreach B € Obj(C), the map

hu (B) hy(U)
(f: B— A) ——— hu(f)(w)

is a bijection.

This is the element of hy (U) corresponding to the identity natural transformation idp - hy =
hy under the isomorphism hy (U) = Hompsh(c) (hu, hu).

REMARK 7.4.2 » WHY “UNIVERSAL” OBJECTS

In other words, a universal object u associated to a representable functor
hy: C — D represented by U is universal in the sense that every element
of hy(A) is equal to the image of u via hy (f) for a unique morphismf: A — U
of C.

EXAMPLE 7.4.3 » UNIVERSAL NUMERABLE PRINCIPAL G-BUNDLES

Let G be a group and consider the functor Bun*™(~): Ho(Top)°® — Sets
sending [X] € Ho(Top)®°P to the set of numerable principal G-bundles on X.
Then the universal numerable principal G-bundle y: EG — BG is a universal
object for Bun™(-).




Furthermore, the map sending y to a principal G-bundle P — X on X is the

pullback
f*: Bunj'™(BG) — Bun}'™(X)

of P along the homotopy class [f]: X — BG classifying P of maps X — BG.
See Algebraic Topology, 22 for more details.

8 The Contravariant Yoneda Lemma

8.1 Copresheaves
Let C be a category.

DEFINITION 8.1.1 » COPRESHEAVES ON A CATEGORY

A copresheafon C isa functor F: C — Sets.

DEFINITION 8.1.2 » THE CATEGORY OF COPRESHEAVES ON A CATEGORY

The category of copresheaves on C is the category CoPSh(C) defined by

def

CoPSh(C) = Fun(C, Sets).

REMARK 8.1.3 » UNWINDING DEFINITION 8.1.2

In detail, the category of copresheaves on C is the category CoPSh(C) where
- Objects. The objects of CoPSh(C) are presheaves on C;

- Morphisms. A morphism of CoPSh(C) from F to G is a natural transforma-
tiona: F = G;

- Identities. For each F € Obj(CoPSh(C)), the unit map
uég°PSh(C): pt — Nat(F, F)

of CoPSh(C) at F is defined by
idgoPSh(C) .

- Composition. Foreach F, G, H € Obj(CoPSh(C)), the composition map

0£oP(©); Nat(G, H) x Nat(F, G) —> Nat(F, H)




8.2 Corepresentable Copresheaves 96

of CoPSh(C) at (F, G, H) is defined by

CoPSh(C)  def
°rcH  4=foua

8.2 Corepresentable Copresheaves

Let C be a category, let U,V € Obj(C),andletf: U — V be a morphism of C.

DEFINITION 8.2.1 » THE COREPRESENTABLE COPRESHEAF ASSOCIATED TO AN OB-
JECT

The corepresentable copresheaf associated to U is the copresheaf
hV: C —> Setson C where
- Action on Objects. For each A € Obj(C), we have

def

hY (A) = Home (U, A);

- Action on Morphisms. For each morphismf: A — Bof C, theimage

W: w@) — wY(B)
~—— ~——
déi‘lomc(U,A) Cl:eiﬂlomC(U,B)
of f by hV is defined by

def

=

DEFINITION 8.2.2 » COREPRESENTABLE COPRESHEAVES

A copresheaf F: C —> Sets is corepresentable if F = hV for some U €
Obj(C).

Y (f)

"In such a case, we call U a corepresenting object for F.
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DEFINITION 8.2.3 » COREPRESENTABLE NATURAL TRANSFORMATIONS

The corepresentable natural transformation associated tof is the natural trans-
formation hf : h¥ = hY consisting of the collection

f. v U
We w) — 1A
de de
=5—|omc(V,A) =5—|omC(U,A) A€0bj(C)
where ]
def 4
h,=f

THEOREM 8.2.4 » THE CONTRAVARIANT YONEDA LEMMA

Let F: C — Sets be a copresheaf on C. We have a bijection
Nat(hA, F) = FA,
natural in A € Obj(C), determining a natural isomorphism of functors

Nat(h(_),F) ~F.

PROOF 8.2.5 » PROOF OF THEOREM 8.2.4

This is dual to Theorem 7.2.4. =

8.3 The Contravariant Yoneda Embedding

DEFINITION 8.3.1 » THE CONTRAVARIANT YONEDA EMBEDDING

The contravariant Yoneda embedding of C is the functor’
Fe: C° — Fun(C, Sets)
where
- Action on Objects. Foreach U € Obj(C), we have

F(U) LpU.
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- Action on Morphisms. For each morphismf: U — V of C, the image
f): £v)— FU)

of f by Fis defined by
F(HEH.

" Further Notation: Also written h(=), or simply .

PROPOSITION 8.3.2 » PROPERTIES OF THE CONTRAVARIANT YONEDA EMBEDDING

Let C be a category.

1. Fully Faithfulness. The contravariant Yoneda embedding is fully faithful.’

2. Preservation and Reflection of Isomorphisms. Let A, B € Obj(C). The follow-
ing conditions are equivalent:
(@) Wehave A = B.
(b) We have hy = hp.
() We have h* = hB.
3. Uniqueness of Representing Objects Up to Isomorphism. Let F: C —> Sets be
a copresheaf. If there exist objects A and B of C such that we have
WA ~F,
WP =F,

then A = B.

4. As a Free Completion: The Universal Property. The pair (CoPSh(C)°P, )
consisting of
- The opposite CoPSh(C)®°P of the category of copresheaves on C;
- The contravariant Yoneda embedding ¥: C < CoPSh(C)° of C
into CoPSh(C)°P;

satisfies the following universal property:

(up) Given another pair (A, F) consisting of
- A complete category A;
- A continuous functor F: C — A;
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. . 3 .
there exists a continuous functor CoPSh(C)°? — A, unique up to
natural isomorphism, making the diagram

CoPSh(C)*®
|
A RE!
/72

c 2
_—
F

commute, again up to natural isomorphism.

5. Asa Free Completion: 2-Adjointness. We have a 2-adjunction

CoPSh°P

=
(CoPSh®P +44):  Cats 1, Cats®™,

S~

]
witnessed by an adjoint equivalence of categories

Ran:f

(Ran‘;.f’ 4 q°*); Fun®"(CoPSh(C)®®, ©) +  Fun(C, D),

—

=

natural in C € Obj(Cats) and D € Obj(Cats®™?").

"In other words, the contravariant Yoneda embedding is indeed an embedding.

PROOF 8.3.3 » PROOF OF PROPOSITION 8.3.2

This is dual to Proposition 7.3.2. =
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Appendices

A Miscellany

A1 Concrete Categories

DEFINITION A.1.1 » CONCRETE CATEGORIES

A category C is concrete if there exists a faithful functor F: C — Sets.

A.2 Balanced Categories

DEFINITION A.2.1 » BALANCED CATEGORIES

A category is balanced if every morphism which is both a monomorphism and an
epimorphism is an isomorphism.

A.3 Monoid Actions on Objects of Categories
Let A be a monoid, let C be a category, and let X € Obj(C).

DEFINITION A.3.1 » MONOID ACTIONS ON OBJECTS OF CATEGORIES

An A-actionon X is a functor A: BA — Cwith (%) = X.

REMARK A.3.2 » UNWINDING DEFINITION A.3.1

In detail, an A-action on X is an A-action on End¢ (X), consisting of a morphism

A:A— End¢(X)
[ —
d:es-iomc(X,X)
satisfying the following conditions:

1. Preservation of Identities. We have

A1, = idy.
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2. Preservation of Composition. Foreach a, b € A, we have

Aa

X — X

Ap © g = Aap, x ‘lb
ab

X.

A.4  Group Actions on Objects of Categories
Let G be a group, let C be a category, and let X € Obj(C).

DEFINITION A.4.1 » GROUP ACTIONS ON OBJECTS OF CATEGORIES

A G-actionon X isa functor 1: BG — C with A(x) = X.

A: G — End¢(X)
———
dé‘-lomc(X,X)
satisfying the following conditions:

1. Preservation of Identities. We have

A1, = idy.

2. Preservation of Composition. Foreach a, b € A, we have

Aa

X —— 5 X
Ap 0 da = Aap, \ |Ab
lab
X.

REMARK A.4.2 » UNWINDING DEFINITION A.4.1

In detail, a G-action on X is a G-action on Aut¢ (X), consisting of a morphism




B Miscellany on Presheaves

B.1 Limits and Colimits of Presheaves
Let C be a category.

ProPOSITION B.1.1 » Co/LIiMITS OF PRESHEAVES ARE COMPUTED OBJECTWISE

LetU € Obj(C). The functor

PSh(C) ——— Sets
F —— F(U)

commutes with limits and colimits: given a diagram F: I — PSh(C) of
presheaves on C, we have

lim(F)y = lim(F(V)),
colim(F)y = cQIiIm(f}}(U))

foreach U € Obj(Q).

PROOF B.1.2 » PROOF OF PROPOSITION B.1.1

Omitted. =

B.2 Injective and Surjective Morphisms of Presheaves

DEFINITION B.2.1 » INJECTIVE AND SURJECTIVE MORPHISMS OF PRESHEAVES

Let C be a category.

1. Amap ¢: F —> @ of presheaves is injective if for each U € Obj(C), the
map
pv: F(U) — GU)

is injective.
2. Amap ¢: F — @ of presheaves is surjective if for each U € Obj(C),
the map

¢v: F(U) — GU)
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is surjective.

PROPOSITION B.2.2 » MONOMORPHISMS AND EPIMORPHISMS OF PRESHEAVES

let¢: & — @ beamorphism of presheaves on C.

1. Monomorphisms of Presheaves. The following conditions are equivalent:

(@) The morphism ¢ isa monomorphismin PSh(C).

(b) The morphism ¢ is injective.
2. Epimorphisms of Presheaves. The following conditions are equivalent:

(@) The morphism ¢ isan epimorphismin PSh(C).

(b) The morphism ¢ is surjective.
3. Isomorphisms of Presheaves. The following conditions are equivalent:

(@) The morphism ¢ isan isomorphismin PSh(C).

(b) The morphism ¢ is injective and surjective.

4. Epi-Mono Factorisation for Presheaves. The morphism ¢ factors as an epimor-
phism followed by a monomorphism, i.e. there exists a factorisation of ¢
of the form

F _¢ c
N
&
with e an epimorphism and m a monomorphism.

PRrROOF B.2.3 » PROOF OF PROPOSITION B.2.2
Item 1: Monomorphisms of Presheaves

We claim that Items (a) and (b) are indeed equivalent:’

- Item (a) = Item (b). Suppose that ¢ is injective, and letf, g: & =% F be
two presheaf morphisms suchthat¢ o f = ¢ o g. Foreach U € 0bj(C),
we have

puofu=(¢of)y=(¢ogy=¢uo°gu.
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Since ¢ is injective, so is ¢y. As injective morphisms are precisely the
monomorphisms in Sets (Example 4.1.2), we have

fu=gu
foreach U € Obj(C). Therefore f = gand ¢ isa monomorphism.

- Item (b) = Item (a). Conversely, suppose that ¢ is a monomorphism and
letU € Obj(C)anda, b € F(U) suchthat ¢y (a) = ¢y (b). By the Yoneda
lemma (Theorem 7.2.4), the sections a and b of F over U correspond to
natural transformations

a:hy =7,
vy = F.

Similarly, the sections ¢y (a) and ¢y (b) of G over U correspond to natural
transformations

pod:hy=C¢QC
pob:hy = Q.

As ¢y (a) = ¢u(b),wehavepoa’ = ¢ ob’,and hencea’” = b’,aspisa
monomorphism. Therefore, a = band ¢ is injective.

Item 2: Epimorphisms of Presheaves
We claim that Items (a) and (b) are indeed equivalent:?

- Item (a) = Item (b). Suppose that ¢ is surjective, and letf, g: G = # be
two presheaf morphisms such thatf o ¢ = g o ¢. Foreach U € Obj(C),
we have

fuodu=(fod)y=(g°o¢)y=2guodu.

Since ¢ is surjective, so is ¢y. As surjective morphisms are precisely the
epimorphisms in Sets (Example 5.1.2), we have

fu=gu

foreach U € Obj(C). Therefore f = gand ¢ is an epimorphism.
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- Item (b) = Item (a). Conversely, suppose that ¢ is an epimorphism. Con-
sider the presheaf #(: C — Sets defined by

#U)=¢W) | | ¢w)

F(U)

foreach U € C. Note that the action of # on morphisms is obtained by
the functoriality of the pushout. By the definition of the pushout, we have

i o ¢y =ir o ¢y,

which impliesi; = iy, since ¢ is an epimorphism. By Limits and Colimits,
Lemma3.5.2, ¢ is surjective.

Item 3: Isomorphisms of Presheaves

We claim that Items (a) and (b) are indeed equivalent:3

- Item (a) == 2. Suppose that ¢ is an isomorphism. Then so is
pu: F(U) — C(U) foreachU € 0Obj(C). As isomorphisms in Sets
are the maps that are both injective and surjective, ¢y is injective and
surjective for each U € Obj(C). Therefore ¢ is injective and surjective.

- Item (b) = 2. Conversely, suppose that ¢ is injective and surjective. Then
sois ¢y foreach U € Obj(C). Furthermore, each ¢y is an isomorphism.
This enables us to construct a natural transformation ¢=': ¢ — F
consisting of the maps {¢;;' : G(U) — F(U)}, whichis an inverse to ¢.
Therefore ¢ is an isomorphism.

Item 4: Epi-Mono Factorisation for Presheaves

See [de]20, Tag 00V9]. =

"Reference: [de]20, Tag 00V7].
2Reference: [de)20, Tag 0QV7].
3Reference: [de]20, Tag 00V7].

B.3 Subpresheaves

Let C be a category.


https://stacks.math.columbia.edu/tag/00V9
https://stacks.math.columbia.edu/tag/00V7
https://stacks.math.columbia.edu/tag/00V7
https://stacks.math.columbia.edu/tag/00V7
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DEFINITION B.3.1 » SUBPRESHEAVES

A subpresheaf of a presheaf ¢ on C is a subobject # of G.

REMARK B.3.2 » UNWINDING DEFINITION B.3.1

In detail, a subpresheaf of ( is an injective map & < @ of presheaves, consist-
ing therefore of a presheaf F satisfying the following conditions:

1. ForeachU € Obj(C), we have 7y € Gu.

2. Foreach morphismf: U — V of C, the diagram

I
Fy — Gy

|

QUTQV

commutes.

B.4 Thelmage Presheaf

Let C be a category.

DEFINITION B.4.1 » IMAGE PRESHEAVES

The image of a morphism ¢: F — @ of presheaves on C is the presheaf Im(¢)
defined by

def

Im(¢)y = Im(¢v)
foreach U € Obj(Q).

PROPOSITION B.4.2 » THE UNIVERSAL PROPERTY OF THE IMAGE PRESHEAF

The image presheaf satisfies the following universal property:

3
(ur) There exists a unique injective morphism of presheaves Im(¢) — @ such
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that the diagram

Im(¢)

_—
commutes.

PROOF B.4.3 » PROOF OF PROPOSITION B.4.2

Suppose we had a factorisation

3!

1
|
!
5 ¢

F

g g
with ¢’ a subpresheaf of ¢. Then we would have

F(U) o ¢'(U) — ), (B.41)
foreachU € Obj(C). But we know thatin Sets the unique subset of G (U) giving

the factorisation in Diagram (B.4.1) is Im(¢y). Thus ¢’ (U) = Im(¢y) foreach
U € Obj(C)and ¢’ = Im(¢). =
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